On Hadamard inequalities for refined convex functions via strictly monotone functions

被引:0
|
作者
Zahra, Moquddsa [1 ]
Abuzaid, Dina [2 ]
Farid, Ghulam [3 ]
Nonlaopon, Kamsing [4 ]
机构
[1] Dept Math, Univ Wah, Wah Cantt, Pakistan
[2] King Abdulaziz Univ, Dept Math, Jeddah, Saudi Arabia
[3] COMSATS Univ Islamabad, Dept Math, Attock Campus, Islamabad, Pakistan
[4] Khon Kaen Univ, Fac Sci, Dept Math, Khon Kaen 40002, Thailand
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 11期
关键词
convex function; refined; (a; h-m)-convex function; monotone function; Hadamard inequality; Riemann-Liouville fractional integrals; INTEGRAL-INEQUALITIES;
D O I
10.3934/math.20221096
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we define refined (alpha, h-m)-convex function with respect to a strictly monotone function. This function provides refinements of various well-known classes of functions for specific strictly monotone functions. By applying definition of this new function we prove the Hadamard inequalities for Riemann-Liouville fractional integrals. These inequalities give the refinements of fractional Hadamard inequalities for convex, (alpha, m)-convex, (h - m)-convex, (s, m)-convex, h-convex and many other related well-known classes of functions implicitly. Also, Hadamard type inequalities for k-fractional integrals are given.
引用
收藏
页码:20043 / 20057
页数:15
相关论文
共 50 条
  • [1] ON AN EXTENSION OF HADAMARD INEQUALITIES OF CONVEX FUNCTIONS
    王中烈
    王兴华
    [J]. Science Bulletin, 1981, (08) : 763 - 764
  • [2] Integral Inequalities Involving Strictly Monotone Functions
    Jleli, Mohamed
    Samet, Bessem
    [J]. MATHEMATICS, 2023, 11 (08)
  • [3] ON THE HERMITE-HADAMARD INEQUALITIES FOR CONVEX FUNCTIONS VIA HADAMARD FRACTIONAL INTEGRALS
    Peng, Shan
    Wei, Wei
    Wang, JinRong
    [J]. FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2014, 29 (01): : 55 - 75
  • [4] Refined Berezin number inequalities via superquadratic and convex functions
    Chien, Fengsheng
    Bakherad, Mojtaba
    Alomari, Mohammad W.
    [J]. FILOMAT, 2023, 37 (01) : 265 - 277
  • [5] ON AN EXTENTION OF HADAMARD INEQUALITIES FOR CONVEX-FUNCTIONS
    WANG, ZL
    WANG, XH
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 1982, 3 (05): : 567 - 570
  • [6] Fractional Integral Inequalities of Hermite-Hadamard Type for Convex Functions With Respect to a Monotone Function
    Mohammed, Pshtiwan Othman
    [J]. FILOMAT, 2020, 34 (07) : 2401 - 2411
  • [7] ON HADAMARD TYPE INEQUALITIES FOR m-CONVEX FUNCTIONS VIA FRACTIONAL INTEGRALS
    Farid, G.
    Rehman, A. Ur
    Tariq, B.
    Waheed, A.
    [J]. JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2016, 7 (04): : 150 - 167
  • [8] On the Hadamard's type Inequalities for Convex Functions via Conformable Fractional Integrals
    Yildirim, M. E.
    Akkurt, A.
    Yildirim, H.
    [J]. JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2018, 9 (03): : 1 - 10
  • [9] Hadamard Inequalities for Strongly (α, m)-Convex Functions via Caputo Fractional Derivatives
    Dong, Yanliang
    Zeb, Muhammad
    Farid, Ghulam
    Bibi, Sidra
    [J]. JOURNAL OF MATHEMATICS, 2021, 2021
  • [10] HERMITE-HADAMARD TYPE INEQUALITIES FOR CONFORMABLE INTEGRALS VIA η-CONVEX FUNCTIONS
    Khurshid, Yousaf
    Khan, Muhammad Adil
    [J]. FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2023, 38 (01): : 77 - 90