Evaluation of algorithms to identify delirium in administrative claims and drug utilization database

被引:89
|
作者
Kim, Dae Hyun [1 ,2 ]
Lee, Jung [2 ]
Kim, Caroline A. [2 ]
Huybrechts, Krista F. [1 ]
Bateman, Brian T. [1 ,4 ]
Patorno, Elisabetta [1 ]
Marcantonio, Edward R. [2 ,3 ]
机构
[1] Brigham & Womens Hosp, Dept Med, Div Pharmacoepidemiol & Pharmacoecon, 1620 Tremont St,Suite 3030, Boston, MA 02120 USA
[2] Beth Israel Deaconess Med Ctr, Dept Med, Div Gerontol, Boston, MA 02215 USA
[3] Beth Israel Deaconess Med Ctr, Dept Med, Div Gen Med & Primary Care, Boston, MA 02215 USA
[4] Brigham & Womens Hosp, Dept Anesthesiol Perioperat & Pain Med, 75 Francis St, Boston, MA 02115 USA
基金
美国国家卫生研究院;
关键词
delirium; case-detection algorithm; claims data; antipsychotics; CONFUSION ASSESSMENT METHOD; ANTIPSYCHOTIC MEDICATION; POSTOPERATIVE DELIRIUM; HOSPITALIZED ADULTS; ELECTIVE SURGERY; VALIDATION; MISCLASSIFICATION; OUTCOMES;
D O I
10.1002/pds.4226
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Purpose To evaluate the performance of delirium-identification algorithms in administrative claims and drug utilization data. Methods We used data from a prospective study of 184 older adults who underwent aortic valve replacement at a single academic medical center to evaluate the following delirium-identification algorithms: (1) International Classification of Diseases (ICD) diagnosis codes for delirium; (2) antipsychotics use; (3) either ICD diagnosis codes or antipsychotics use; and (4) both ICD diagnosis codes and antipsychotics use. These algorithms were evaluated against a validated bedside assessment, the Confusion Assessment Method, and a validated delirium severity scale, the CAM-S. Results Delirium occurred in 66 patients (36%), of which 14 (21%) had hyperactive or mixed features and 15 (23%) had severe delirium. ICD diagnosis codes for delirium were present in 15 patients (8%). Antipsychotics were used in 13 patients (7%). ICD diagnosis codes alone and antipsychotics use alone had comparable sensitivity (18% vs. 18%) and specificity (98% vs. 99%). Defining delirium using either ICD diagnosis codes or antipsychotics use, sensitivity improved to 30% with little change in specificity (97%). This algorithm showed higher sensitivity for hyperactive or mixed delirium (64%) and severe delirium (73%). Requiring both ICD diagnosis codes and antipsychotics use resulted in perfect specificity but low sensitivity (6%). Conclusion Delirium-identification algorithms in claims data have low sensitivity and high specificity. Defining delirium using ICD diagnosis codes or antipsychotics use performs better than considering either type of information alone. This information should inform the design and interpretation of claims-based comparative effectiveness and safety research. Copyright (C) 2017 John Wiley & Sons, Ltd.
引用
收藏
页码:945 / 953
页数:9
相关论文
共 50 条
  • [1] Evaluation of Algorithms to Identify Delirium in Health Care Utilization Database
    Lee, J.
    Kim, C.
    Huybrechts, K.
    Batemen, B.
    Marcantonio, E.
    Kim, D.
    JOURNAL OF THE AMERICAN GERIATRICS SOCIETY, 2017, 65 : S223 - S223
  • [2] Evaluation of the accuracy of algorithms to identify soft tissue sarcoma (STS) in administrative claims
    Princic, Nicole
    McMorrow, Donna
    Chan, Philip
    Hess, Lisa
    CLINICAL SARCOMA RESEARCH, 2020, 10 (01)
  • [3] Utilization of Big Data with a Focus on Administrative Claims Database
    Yokoyama, Satoshi
    Hosomi, Kouichi
    YAKUGAKU ZASSHI-JOURNAL OF THE PHARMACEUTICAL SOCIETY OF JAPAN, 2023, 143 (06): : 497 - 500
  • [4] A Retrospective Administrative Claims Database Evaluation of the Utilization of Belimumab in US Managed Care Settings
    Ke, Xuehua
    Lawrence, Debra F. Eisenberg
    Oglesby, Alan
    Patel, Jeetvan
    Kan, Hong
    Boggs, Robert
    CLINICAL THERAPEUTICS, 2015, 37 (12) : 2852 - 2863
  • [5] Validation of algorithms to identify knee osteoarthritis patients in the claims database
    Park, Ha-Rim
    Im, SeulGi
    Kim, Hyoungyoung
    Jung, Sun-Young
    Kim, Dalho
    Jang, Eun Jin
    Sung, Yoon-Kyoung
    Cho, Soo-Kyung
    INTERNATIONAL JOURNAL OF RHEUMATIC DISEASES, 2019, 22 (05) : 890 - 896
  • [6] DRUG UTILIZATION REVIEW USING A MEDICAID CLAIMS DATABASE
    SENA, MM
    PASHKO, S
    CLINICAL THERAPEUTICS, 1993, 15 (05) : 900 - 904
  • [7] A Validated Method to Identify Neuro-Ophthalmologists in a Large Administrative Claims Database
    Feng, Yilin
    Lin, Chun Chieh
    Hamedani, Ali G. G.
    De Lott, Lindsey B. B.
    JOURNAL OF NEURO-OPHTHALMOLOGY, 2023, 43 (02) : 153 - 158
  • [8] DEVELOPING AN ALGORITHM TO IDENTIFY PATIENTS WITH ACUTE INTERMITTENT PORPHYRIA IN AN ADMINISTRATIVE CLAIMS DATABASE
    Agarwal, S.
    McManus, A.
    Querbes, W.
    Simon, A.
    Noxon, V
    Cole, A.
    Johnson, B. H.
    VALUE IN HEALTH, 2018, 21 : S213 - S213
  • [9] DEVELOPMENT AND VALIDATION OF ALGORITHMS TO IDENTIFY STATIN INTOLERANCE IN A US ADMINISTRATIVE DATABASE
    Foody, J. M.
    Lamerato, L.
    Dalal, M.
    Sung, J. C.
    Khan, I
    Jhaveri, M.
    Koren, A.
    Schulman, K. L.
    VALUE IN HEALTH, 2015, 18 (03) : A2 - A2
  • [10] Development and Validation of Algorithms to Identify Stalin Intolerance in a US Administrative Database
    Schulman, Kathy L.
    Lamerato, Lois E.
    Dalal, Mehul R.
    Sung, Jennifer
    Jhaveri, Mehul
    Koren, Andrew
    Mallya, Usha G.
    Foody, JoAnne M.
    VALUE IN HEALTH, 2016, 19 (06) : 852 - 860