Nitrogen (N) fertilization is a common agricultural practice, which, by increasing the quality of plants, also enhances their nutritional suitability for insect herbivores, creating the possibility of a cascade of N across trophic levels, from plant to herbivore to predator. We manipulated the quality of cucumber plants by fertilizing them with three different N rates (110, 160, and 210 ppm), which represented low, medium, and high N levels, respectively. Colonies of Aphis gossypii Glover (Hemiptera: Aphididae) were then reared on these plants and used as prey for adult Hippodamia variegate (Goeze) (Coleoptera: Coccinellidae) in experiments that characterized the predator's foraging behavior and functional response to different aphid densities. The nutritional content of plants and aphids was also measured. As N fertilization increased, so did the nutrient content (total energy) of aphids and this resulted in declining rates of aphid consumption by beetles at higher aphid densities. Females in the 110 N treatment, and males in all treatments, responded to aphids with a type II functional response (decelerating consumption at higher densities), but females in the 160 and 210 ppm N treatments exhibited a type III response (consuming a declining proportion of available aphids at high densities). Beetles fed aphids from the 110 N treatment consumed more prey in both assays than did those fed aphids from the 210 N treatment. Beetle searching time, handling time, and duration of digestive pauses all increased at high levels of N fertilization, especially for females.The results indicate that heavy N fertilization can increase prey nutritional quality to the point where it alters predator foraging and feeding behavior, resulting in slower rates of prey consumption and longer prey handling times.