On robust recursive nonparametric curve estimation

被引:0
|
作者
Belitser, E [1 ]
van de Geer, S [1 ]
机构
[1] Leiden Univ, Math Inst, NL-2333 CA Leiden, Netherlands
来源
关键词
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Suppose we observe X-k = theta (x(k)) + xi (k) The function theta: [0, 1] --> R, is assumed to belong a priori to a given nonparametric smoothness class, the xi (k)'s are independent identically distributed random variables with zero medians. The only prior information about the distribution of the noise is that it belongs to a rather wide class. The assumptions describing this class include cases in which no moments of the noises exist, so that linear estimation methods (for example, kernel methods) can not be applied. We propose a robust estimator based on a stochastic approximation procedure and derive its rate of convergence, as the frequency of observations n tends to infinity, in almost sure as well as in mean square sense, uniformly over the smoothness class. Finally, we discuss a multivariate formulation of the problem, a robust nonparametric M-estimator (the least deviations estimator), the so called penalized estimator, and the case when the noises are not necessarily identically distributed.
引用
收藏
页码:391 / 403
页数:13
相关论文
共 50 条
  • [1] ROBUST NONPARAMETRIC REGRESSION WITH SIMULTANEOUS SCALE CURVE ESTIMATION
    HARDLE, W
    TSYBAKOV, AB
    ANNALS OF STATISTICS, 1988, 16 (01): : 120 - 135
  • [2] Nonparametric recursive quantile estimation
    Kohler, Michael
    Krzyzak, Adam
    Walk, Harro
    STATISTICS & PROBABILITY LETTERS, 2014, 93 : 102 - 107
  • [3] Nonparametric recursive estimation of the copula
    Lemyre, Felix Camirand
    Decrouez, Geoffrey
    STATISTICS & PROBABILITY LETTERS, 2021, 168
  • [4] Nonparametric recursive variance estimation
    Stadtmuller, V
    Tsybakov, AB
    STATISTICS, 1995, 27 (1-2) : 55 - 63
  • [5] Recursive Nonparametric Estimation for Time Series
    Huang, Yinxiao
    Chen, Xiaohong
    Wu, Wei Biao
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (02) : 1301 - 1312
  • [6] KERNELS FOR NONPARAMETRIC CURVE ESTIMATION
    GASSER, T
    MULLER, HG
    MAMMITZSCH, V
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1985, 47 (02): : 238 - 252
  • [7] A nonparametric estimation of the infection curve
    YIP Paul S.F.
    HUGGINS Richard M.
    ScienceChina(Mathematics), 2011, 54 (09) : 1815 - 1828
  • [8] A nonparametric estimation of the infection curve
    Lin HuaZhen
    Yip, Paul S. F.
    Huggins, Richard M.
    SCIENCE CHINA-MATHEMATICS, 2011, 54 (09) : 1815 - 1828
  • [9] A nonparametric estimation of the infection curve
    HuaZhen Lin
    Paul S. F. Yip
    Richard M. Huggins
    Science China Mathematics, 2011, 54 : 1815 - 1828
  • [10] Recursive estimation of nonparametric regression with functional covariate
    Amiri, Aboubacar
    Crambes, Christophe
    Thiam, Baba
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 69 : 154 - 172