Uniqueness of solution to systems of elliptic operators and application to asymptotic synchronization of linear dissipative systems

被引:4
|
作者
Li, Tatsien [1 ]
Rao, Bopeng [2 ,3 ]
机构
[1] Fudan Univ, Sch Math Sci, Nonlinear Math Modeling & Methods Lab, Shanghai Key Lab Contemporary Appl Math, Shanghai 200433, Peoples R China
[2] Univ Strasbourg, Inst Rech Math Avancee, F-67084 Strasbourg, France
[3] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
uniqueness; elliptic systems; asymptotic synchronization; condition of compatibility; Kalman's rank condition; ENERGY DECAY; BOUNDARY CONTROL; CONTINUATION; STABILIZATION; EQUATIONS;
D O I
10.1051/cocv/2020062
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We show that under Kalman's rank condition on the coupling matrices, the uniqueness of solution to a complex system of elliptic operators can be reduced to the observability of a scalar problem. Based on this result, we establish the asymptotic stability and the asymptotic synchronization for a large class of linear dissipative systems.
引用
收藏
页数:26
相关论文
共 50 条