Abelian groups, Gauss periods, and normal bases

被引:12
|
作者
Gao, SH [1 ]
机构
[1] Clemson Univ, Dept Math Sci, Clemson, SC 29634 USA
基金
美国国家科学基金会;
关键词
finite fields; finite abelian groups; Gauss periods; normal bases;
D O I
10.1006/ffta.2000.0304
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A result on finite abelian groups is first proved and then used to solve problems in finite fields. Particularly, all finite fields that have normal bases generated by general Gauss periods are characterized and it is shown how to find normal bases of low complexity. (C) 2000 Academic Press.
引用
收藏
页码:149 / 164
页数:16
相关论文
共 50 条
  • [1] Normal bases via general Gauss periods
    Feisel, S
    Von zur Gathen, J
    Shokrollahi, MA
    MATHEMATICS OF COMPUTATION, 1999, 68 (225) : 271 - 290
  • [2] Complexities of normal bases constructed from Gauss periods
    Hou, Xiang-Dong
    DESIGNS CODES AND CRYPTOGRAPHY, 2018, 86 (04) : 893 - 905
  • [3] Gauss periods as constructions of low complexity normal bases
    M. Christopoulou
    T. Garefalakis
    D. Panario
    D. Thomson
    Designs, Codes and Cryptography, 2012, 62 : 43 - 62
  • [4] Complexities of normal bases constructed from Gauss periods
    Xiang-Dong Hou
    Designs, Codes and Cryptography, 2018, 86 : 893 - 905
  • [5] Gauss periods as constructions of low complexity normal bases
    Christopoulou, M.
    Garefalakis, T.
    Panario, D.
    Thomson, D.
    DESIGNS CODES AND CRYPTOGRAPHY, 2012, 62 (01) : 43 - 62
  • [6] ADDITIVE BASES IN ABELIAN GROUPS
    Lev, Vsevolod F.
    Muzychuk, Mikhail E.
    Pinchasi, Rom
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2010, 6 (04) : 799 - 809
  • [7] Reciprocity for Gauss sums on finite abelian groups
    Turaev, V
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1998, 124 : 205 - 214
  • [8] Difference bases in finite Abelian groups
    Taras Banakh
    Volodymyr Gavrylkiv
    Acta Scientiarum Mathematicarum, 2019, 85 : 119 - 137
  • [9] ON MULTIPLICATIVE BASES IN ABELIAN-GROUPS
    PUS, V
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1991, 41 (02) : 282 - 287
  • [10] On perfect bases in finite abelian groups
    Bajnok, Bela
    Berson, Connor
    Just, Hoang Anh
    INVOLVE, A JOURNAL OF MATHEMATICS, 2022, 15 (03): : 525 - 536