Understanding, discovery, and synthesis of 2D materials enabled by machine learning

被引:76
|
作者
Ryu, Byunghoon [1 ]
Wang, Luqing [2 ,3 ]
Pu, Haihui [1 ,4 ]
Chan, Maria K. Y. [2 ,5 ]
Chen, Junhong [1 ,4 ]
机构
[1] Argonne Natl Lab, Chem Sci & Engn Div, Phys Sci & Engn Directorate, 9700 S Cass Ave, Argonne, IL 60439 USA
[2] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA
[3] Northwestern Univ, Mat Res Ctr, Evanston, IL 60208 USA
[4] Univ Chicago, Pritzker Sch Mol Engn, Chicago, IL 60637 USA
[5] Northwestern Argonne Inst Sci & Engn, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
2-DIMENSIONAL MATERIALS; IDENTIFICATION;
D O I
10.1039/d1cs00503k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Machine learning (ML) is becoming an effective tool for studying 2D materials. Taking as input computed or experimental materials data, ML algorithms predict the structural, electronic, mechanical, and chemical properties of 2D materials that have yet to be discovered. Such predictions expand investigations on how to synthesize 2D materials and use them in various applications, as well as greatly reduce the time and cost to discover and understand 2D materials. This tutorial review focuses on the understanding, discovery, and synthesis of 2D materials enabled by or benefiting from various ML techniques. We introduce the most recent efforts to adopt ML in various fields of study regarding 2D materials and provide an outlook for future research opportunities. The adoption of ML is anticipated to accelerate and transform the study of 2D materials and their heterostructures.
引用
收藏
页码:1899 / 1925
页数:27
相关论文
共 50 条
  • [1] Machine Learning Enabled Prediction of High Stiffness 2D Materials
    Nadella, Hema Rajesh
    Mukherjee, Sankha
    Anand, Abu
    Singh, Chandra Veer
    [J]. ACS MATERIALS LETTERS, 2024, 6 (02): : 729 - 736
  • [2] Machine learning-accelerated discovery of novel 2D ferromagnetic materials with strong magnetization
    Xin, Chao
    Yin, Yaohui
    Song, Bingqian
    Fan, Zhen
    Song, Yongli
    Pan, Feng
    [J]. CHIP, 2023, 2 (04):
  • [3] Machine Learning-Enabled Design of Point Defects in 2D Materials for Quantum and Neuromorphic Information Processing
    Frey, Nathan C.
    Akinwande, Deji
    Jariwala, Deep
    Shenoy, Vivek B.
    [J]. ACS NANO, 2020, 14 (10) : 13406 - 13417
  • [4] On the Technologies of Artificial Intelligence and Machine Learning for 2D Materials
    D. Yu. Kirsanova
    M. A. Soldatov
    Z. M. Gadzhimagomedova
    D. M. Pashkov
    A. V. Chernov
    M. A. Butakova
    A. V. Soldatov
    [J]. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2021, 15 : 485 - 494
  • [5] When Machine Learning Meets 2D Materials: A Review
    Lu, Bin
    Xia, Yuze
    Ren, Yuqian
    Xie, Miaomiao
    Zhou, Liguo
    Vinai, Giovanni
    Morton, Simon A.
    Wee, Andrew T. S.
    van der Wiel, Wilfred G.
    Zhang, Wen
    Wong, Ping Kwan Johnny
    [J]. ADVANCED SCIENCE, 2024, 11 (13)
  • [6] Exploring and machine learning structural instabilities in 2D materials
    Simone Manti
    Mark Kamper Svendsen
    Nikolaj R. Knøsgaard
    Peder M. Lyngby
    Kristian S. Thygesen
    [J]. npj Computational Materials, 9
  • [7] On the Technologies of Artificial Intelligence and Machine Learning for 2D Materials
    Kirsanova, D. Yu.
    Soldatov, M. A.
    Gadzhimagomedova, Z. M.
    Pashkov, D. M.
    Chernov, A. V.
    Butakova, M. A.
    Soldatov, A. V.
    [J]. JOURNAL OF SURFACE INVESTIGATION, 2021, 15 (03): : 485 - 494
  • [8] Exploring and machine learning structural instabilities in 2D materials
    Manti, Simone
    Svendsen, Mark Kamper
    Knosgaard, Nikolaj R. R.
    Lyngby, Peder M. M.
    Thygesen, Kristian S. S.
    [J]. NPJ COMPUTATIONAL MATERIALS, 2023, 9 (01)
  • [9] Machine Learning Study of the Magnetic Ordering in 2D Materials
    Acosta, Carlos Mera
    Ogoshi, Elton
    Souza, Jose Antonio
    Dalpian, Gustavo M.
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (07) : 9418 - 9432
  • [10] Accelerating 2D materials discovery
    Thakur, Anupma
    Anasori, Babak
    [J]. SCIENCE, 2024, 383 (6688) : 1182 - 1183