Minimum thermal conductivity in the context of diffuson-mediated thermal transport

被引:228
|
作者
Agne, Matthias T. [1 ]
Hanus, Riley [1 ]
Snyder, G. Jeffrey [1 ]
机构
[1] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
关键词
AMORPHOUS-SILICON; THERMOELECTRIC-MATERIALS; LATTICE-VIBRATIONS; GLASSES; TEMPERATURE; CRYSTALS; SI; FIGURE; MERIT; MODEL;
D O I
10.1039/c7ee03256k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A model for the thermal conductivity of bulk solids is proposed in the limit of diffusive transport mediated by diffusons as opposed to phonons. This diffusive thermal conductivity, kappa(diff), is determined by the average energy of the vibrational density of states, (h) over bar omega(avg), and the number density of atoms, n. Furthermore, kdiff is suggested as an appropriate estimate of the minimum thermal conductivity for complex materials, such that (at high temperatures): kappa(diff) = n1/3k(B)/pi omega(avg) approximate to kappa(min). A heuristic finding of this study is that the experimental oavg is highly correlated with the Debye temperature, allowing kappa(diff) to be estimated from the longitudinal and transverse speeds of sound: kappa(diff) approximate to 0.76n2/3kB1/3(2v(T) + v(L)) thorn vLthorn. Using this equation to estimate kappa(min) gives values 37% lower than the widely-used Cahill result and 18% lower than the Clarke model for kappa(min), on average. This model of diffuson-mediated thermal conductivity may thus help explain experimental results of ultralow thermal conductivity.
引用
收藏
页码:609 / 616
页数:8
相关论文
共 50 条
  • [1] Considering the Role of Ion Transport in Diffuson-Dominated Thermal Conductivity
    Bernges, Tim
    Hanus, Riley
    Wankmiller, Bjoern
    Imasato, Kazuki
    Lin, Siqi
    Ghidiu, Michael
    Gerlitz, Marius
    Peterlechner, Martin
    Graham, Samuel
    Hautier, Geoffroy
    Pei, Yanzhong
    Hansen, Michael Ryan
    Wilde, Gerhard
    Snyder, G. Jeffrey
    George, Janine
    Agne, Matthias T.
    Zeier, Wolfgang G.
    [J]. ADVANCED ENERGY MATERIALS, 2022, 12 (22)
  • [2] Hydrogen effect on diffuson-dominant thermal conductivity in a-SiNx
    Zhang, Chao
    Meng, Wei
    He, Jinjin
    Cheng, Peihong
    Gao, Rong
    Fu, Minghui
    Tang, Yinliang
    Zhang, Zhuo
    Ren, Yiyuan
    Du, Xuezhen
    Tang, Yujing
    Zhang, Yan
    Xiong, Rongxin
    Lu, Shengnan
    Gao, Zhen
    Liu, Huili
    Liu, Yifan
    Wang, Hung-Ta
    [J]. PHYSICAL REVIEW B, 2024, 110 (12)
  • [3] Minimum thermal conductivity of superlattices
    Simkin, MV
    Mahan, GD
    [J]. PHYSICAL REVIEW LETTERS, 2000, 84 (05) : 927 - 930
  • [4] Observation of suppressed diffuson and propagon thermal conductivity of hydrogenated amorphous silicon films
    Zhang, Yingying
    Eslamisaray, Mohammad Ali
    Feng, Tianli
    Kortshagen, Uwe
    Wang, Xiaojia
    [J]. NANOSCALE ADVANCES, 2021, 4 (01): : 87 - 94
  • [5] MINIMUM THERMAL-CONDUCTIVITY OF GERMANIUM
    GOLDSMID, HJ
    PAUL, GL
    [J]. THIN SOLID FILMS, 1983, 103 (1-2) : L47 - L48
  • [6] An anisotropic model for the minimum thermal conductivity
    Chen, Zhen
    Dames, Chris
    [J]. APPLIED PHYSICS LETTERS, 2015, 107 (19)
  • [7] THERMAL-CONDUCTIVITY MINIMUM OF METALS
    MOTAKABBIR, KA
    GRIMVALL, G
    [J]. PHYSICAL REVIEW B, 1981, 23 (02): : 523 - 526
  • [8] THERMAL-CONDUCTIVITY MINIMUM OF ALUMINUM
    MUCHA, J
    RAFALOWICZ, J
    [J]. PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1978, 48 (01): : 221 - 224
  • [9] A unified understanding of minimum lattice thermal conductivity
    Xia, Yi
    Gaines II, Dale
    He, Jiangang
    Pal, Koushik
    Li, Zhi
    Kanatzidis, Mercouri G.
    Ozolins, Vidvuds
    Wolverton, Chris
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2023, 120 (26)
  • [10] Thermal Conductivity Minimum: A New Water Anomaly
    Kumar, Pradeep
    Stanley, H. Eugene
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2011, 115 (48): : 14269 - 14273