MMatch: Semi-Supervised Discriminative Representation Learning for Multi-View Classification

被引:15
|
作者
Wang, Xiaoli [1 ]
Fu, Liyong [2 ,3 ]
Zhang, Yudong [4 ]
Wang, Yongli [1 ]
Li, Zechao [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210000, Peoples R China
[2] Chinese Acad Forestry, Res Inst Forest Resource Informat Tech, Beijing 100091, Peoples R China
[3] Natl Forestry & Grassland Adm, Key Lab Forest Management & Growth Modeling, Beijing 100091, Peoples R China
[4] Henan Polytech Univ, Sch Comp Sci & Technol, Jiaozuo 454000, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Representation learning; Training; Predictive models; Forestry; Feature extraction; Entropy; Task analysis; Semi-supervised learning; multi-view classification; discriminative representation; pseudo-labeling;
D O I
10.1109/TCSVT.2022.3159371
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Semi-supervised multi-view learning has been an important research topic due to its capability to exploit complementary information from unlabeled multi-view data. This work proposes MMatch, a new semi-supervised discriminative representation learning method for multi-view classification. Unlike existing multi-view representation learning methods that seldom consider the negative impact caused by particular views with unclear classification structures (weak discriminative views). MMatch jointly learns view-specific representations and class probabilities of training data. The representations concatenated to integrate multiple views' information to form a global representation. Moreover, MMatch performs the smoothness constraint on the class probabilities of the global representation to improve pseudo labels, whereas the pseudo labels regularize the structure of view-specific representations. A discriminative global representation is mined with the training process, and the negative impact of weak discriminative views is overcome. Besides, MMatch learns consistent classification while preserving diverse information from multiple views. Experiments on several multi-view datasets demonstrate the effectiveness of MMatch.
引用
收藏
页码:6425 / 6436
页数:12
相关论文
共 50 条
  • [1] Multi-view Learning for Semi-supervised Sentiment Classification
    Su, Yan
    Li, Shoushan
    Ju, Shengfeng
    Zhou, Guodong
    Li, Xiaojun
    [J]. 2012 INTERNATIONAL CONFERENCE ON ASIAN LANGUAGE PROCESSING (IALP 2012), 2012, : 13 - 16
  • [2] Multi-view semi-supervised learning for image classification
    Zhu, Songhao
    Sun, Xian
    Jin, Dongliang
    [J]. NEUROCOMPUTING, 2016, 208 : 136 - 142
  • [3] Semi-Supervised Multi-View Deep Discriminant Representation Learning
    Jia, Xiaodong
    Jing, Xiao-Yuan
    Zhu, Xiaoke
    Chen, Songcan
    Du, Bo
    Cai, Ziyun
    He, Zhenyu
    Yue, Dong
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (07) : 2496 - 2509
  • [4] Semi-supervised Deep Representation Learning for Multi-View Problems
    Noroozi, Vahid
    Bahaadini, Sara
    Zheng, Lei
    Xie, Sihong
    Shao, Weixiang
    Yu, Philip S.
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 56 - 64
  • [5] Embedding Regularizer Learning for Multi-View Semi-Supervised Classification
    Huang, Aiping
    Wang, Zheng
    Zheng, Yannan
    Zhao, Tiesong
    Lin, Chia-Wen
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 6997 - 7011
  • [6] Trusted Semi-Supervised Multi-View Classification With Contrastive Learning
    Wang, Xiaoli
    Wang, Yongli
    Wang, Yupeng
    Huang, Anqi
    Liu, Jun
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 8268 - 8278
  • [7] Semi-Supervised Learning for Multi-View Data Classification and Visualization
    Ziraki, Najmeh
    Bosaghzadeh, Alireza
    Dornaika, Fadi
    [J]. INFORMATION, 2024, 15 (07)
  • [8] Multi-view semi-supervised learning for classification on dynamic networks
    Chen, Chuan
    Li, Yuzheng
    Qian, Hui
    Zheng, Zibin
    Hu, Yanqing
    [J]. KNOWLEDGE-BASED SYSTEMS, 2020, 195
  • [9] Multi-view semi-supervised classification overview
    Jiang, Lekang
    [J]. PROCEEDINGS OF 2021 2ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INFORMATION SYSTEMS (ICAIIS '21), 2021,
  • [10] Latent Multi-view Semi-Supervised Classification
    Bo, Xiaofan
    Kang, Zhao
    Zhao, Zhitong
    Su, Yuanzhang
    Chen, Wenyu
    [J]. ASIAN CONFERENCE ON MACHINE LEARNING, VOL 101, 2019, 101 : 348 - 362