Classical and Bayesian Estimation of the Inverse Weibull Distribution: Using Progressive Type-I Censoring Scheme

被引:13
|
作者
Algarni, Ali [1 ]
Elgarhy, Mohammed [2 ]
Almarashi, Abdullah [1 ]
Fayomi, Aisha [1 ]
El-Saeed, Ahmed [3 ]
机构
[1] King Abdulaziz Univ, Stat Dept, Fac Sci, Jeddah 21551, Saudi Arabia
[2] Higher Inst Commercial Sci, Al Mahalla Al Kubra 31951, Algarbia, Egypt
[3] Obour High Inst Management & Informat, Dept Basic Sci, Cairo, Egypt
关键词
PARAMETERS; FAILURE;
D O I
10.1155/2021/5701529
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The challenge of estimating the parameters for the inverse Weibull (IW) distribution employing progressive censoring Type-I (PCTI) will be addressed in this study using Bayesian and non-Bayesian procedures. To address the issue of censoring time selection, qauntiles from the IW lifetime distribution will be implemented as censoring time points for PCTI. Focusing on the censoring schemes, maximum likelihood estimators (MLEs) and asymptotic confidence intervals (ACI) for unknown parameters are constructed. Under the squared error (SEr) loss function, Bayes estimates (BEs) and concomitant maximum posterior density credible interval estimations are also produced. The BEs are assessed using two methods: Lindley's approximation (LiA) technique and the Metropolis-Hasting (MH) algorithm utilizing Markov Chain Monte Carlo (MCMC). The theoretical implications of MLEs and BEs for specified schemes of PCTI samples are shown via a simulation study to compare the performance of the different suggested estimators. Finally, application of two real data sets will be employed.
引用
收藏
页数:15
相关论文
共 50 条