Photolithography and micromolding techniques for the realization of 3D polycaprolactone scaffolds for tissue engineering applications

被引:20
|
作者
Limongi, Tania [1 ,2 ]
Schipani, Rossana [1 ]
Di Vito, Anna [3 ]
Giugni, Andrea [1 ,2 ]
Francardi, Marco [1 ,2 ]
Torre, Bruno [1 ,2 ]
Allione, Marco [1 ,2 ]
Miele, Ermanno [4 ]
Malara, Natalia [5 ]
Alrasheed, Salma [1 ]
Raimondo, Raffaella [1 ,6 ]
Candeloro, Patrizio [6 ]
Mollace, Vincenzo [5 ]
Di Fabrizio, Enzo [1 ,2 ,6 ]
机构
[1] King Abdullah Univ Sci & Technol, PSE Div, Thuwal 239556900, Saudi Arabia
[2] King Abdullah Univ Sci & Technol, BESE Div, Thuwal 239556900, Saudi Arabia
[3] Univ Catanzaro Magna Graecia, Dept Expt & Clin Med, Mol Oncol Lab, I-88100 Catanzaro, Italy
[4] IIT, I-16163 Genoa, Italy
[5] Magna Graecia Univ Catanzaro, Dept Hlth Sci, IRC FSH, I-88021 Roccelletta Di Borgia, Italy
[6] Univ Magna Graecia Viale Europa, Dept Expt & Clin Med, Bionanotechnol & Engn Med, BIONEM, I-88100 Catanzaro, Italy
关键词
Nanostructured PCL pillars; Microfabrication technique; Biocompatible substrate; Human stem cells; Neural networks; NERVE REGENERATION; CELL RESPONSE; ORIENTATION; ATTACHMENT; SURFACES; GROWTH; SILK;
D O I
10.1016/j.mee.2015.02.030
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Material science, cell biology, and engineering are all part of the research field of tissue engineering. It is the application of knowledge, methods and instrumentations of engineering and life science to the development of biocompatible solutions for repair and/or replace tissues and damaged organs. Last generation inicrofabrication technologies utilizing natural and synthetic biomaterials allow the realization of scaffolds resembling tissue-like structures as skin, brain, bones, muscles, cartilage and blood vessels. In this work we describe an effective and simple micromolding fabrication process allowing the realization of 3D polycaprolactone (PCL) scaffold for human neural stem cells (hNSC) culture. Scanning Electron Microscopy has been used to investigate the micro and nano features characterizing the surface of the device. Immunofluorescence analysis showed how, after seeding cells onto the substrate, healthy astrocytes grew up in a well-organized 3D network. Thus, we proposed this effective fabrication method for the production of nanopattemed PCL pillared scaffold providing a biomimetic environment for the growth of hNSC, a promising and efficient means for future applications in tissue engineering and regenerative medicine. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:135 / 139
页数:5
相关论文
共 50 条
  • [1] Fabrication of 3D printed antimicrobial polycaprolactone scaffolds for tissue engineering applications
    Radhakrishnan, Socrates
    Nagarajan, Sakthivel
    Belaid, Habib
    Farha, Cynthia
    Iatsunskyi, Igor
    Coy, Emerson
    Soussan, Laurence
    Huon, Vincent
    Bares, Jonathan
    Belkacemi, Kawthar
    Teyssier, Catherine
    Balme, Sebastien
    Miele, Philippe
    Cornu, David
    Kalkura, Narayana
    Cavailles, Vincent
    Bechelany, Mikhael
    [J]. MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2021, 118
  • [2] Biodegradable and 3D printable lysine functionalized polycaprolactone scaffolds for tissue engineering applications
    Naik, Sonali S.
    Torris, Arun
    Choudhury, Namita R.
    Dutta, Naba K.
    Nair, Kiran Sukumaran
    [J]. BIOMATERIALS ADVANCES, 2024, 159
  • [3] 3D printing of silk microparticle reinforced polycaprolactone scaffolds for tissue engineering applications
    Vyas, Cian
    Zhang, Jun
    Ovrebo, Oystein
    Huang, Boyang
    Roberts, Iwan
    Setty, Mohan
    Allardyce, Benjamin
    Haugen, Havard
    Rajkhowa, Rangam
    Bartolo, Paulo
    [J]. MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2021, 118
  • [4] Microfabricated 3D scaffolds for tissue engineering applications
    Mata, A
    Fleischman, AJ
    Roy, S
    [J]. Nanoscale Materials Science in Biology and Medicine, 2005, 845 : 97 - 103
  • [5] Mimicking nature: Fabrication of 3D anisotropic electrospun polycaprolactone scaffolds for cartilage tissue engineering applications
    Girao, Andre F.
    Semitela, Angela
    Ramalho, Goncalo
    Completo, Antonio
    Marques, Paula A. A. P.
    [J]. COMPOSITES PART B-ENGINEERING, 2018, 154 : 99 - 107
  • [6] 3D printing of bioceramic/polycaprolactone composite scaffolds for bone tissue engineering
    Shie, Ming-You
    Lai, Chun-Che
    Chiang, Po-Han
    Chung, Han-Chi
    Ho, Chia-Che
    [J]. 2022 IEEE 22ND INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE 2022), 2022, : 142 - 145
  • [7] Polycaprolactone scaffolds prepared by 3D printing electrosprayed with polyethylene glycol-polycaprolactone block copolymers for applications in bone tissue engineering
    Romero-Araya, Pablo
    Cardenas, Verena
    Nenen, Ariel
    Martinez, Gabriela
    Pavicic, Francisca
    Ehrenfeld, Pamela
    Serandour, Guillaume
    Covarrubias, Cristian
    Neira, Miguel
    Moreno-Villoslada, Ignacio
    Flores, Mario E.
    [J]. POLYMER, 2023, 288
  • [8] Applications of nanotechnology in 3D printed tissue engineering scaffolds
    Laird, Noah Z.
    Acri, Timothy M.
    Chakka, Jaidev L.
    Quarterman, Juliana C.
    Malkawi, Walla, I
    Elangovan, Satheesh
    Salem, Aliasger K.
    [J]. EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS, 2021, 161 : 15 - 28
  • [9] On 3D printed scaffolds for orthopedic tissue engineering applications
    Ranjan, Nishant
    Singh, Rupinder
    Ahuja, I. P. S.
    Kumar, Ranvijay
    Singh, Jatenderpal
    Verma, Anita K.
    Leekha, Ankita
    [J]. SN APPLIED SCIENCES, 2020, 2 (02)
  • [10] On 3D printed scaffolds for orthopedic tissue engineering applications
    Nishant Ranjan
    Rupinder Singh
    I. P. S. Ahuja
    Ranvijay Kumar
    Jatenderpal Singh
    Anita K. Verma
    Ankita Leekha
    [J]. SN Applied Sciences, 2020, 2