Triangulated categories of Gorenstein cyclic quotient singularities

被引:7
|
作者
Ueda, Kazushi [1 ]
机构
[1] Osaka Univ, Grad Sch Sci, Dept Math, Osaka 5600043, Japan
关键词
D O I
10.1090/S0002-9939-08-09470-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove there is an equivalence of derived categories between Orlov's triangulated category of singularities for a Gorenstein cyclic quotient singularity and the derived category of representations of a quiver with relations, which is obtained from a McKay quiver by removing one vertex and half of the arrows. This result produces examples of distinct quivers with relations which have equivalent derived categories of representations.
引用
收藏
页码:2745 / 2747
页数:3
相关论文
共 50 条
  • [1] Nearly Gorenstein cyclic quotient singularities
    Caminata, Alessio
    Strazzanti, Francesco
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2021, 62 (04): : 857 - 870
  • [2] Nearly Gorenstein cyclic quotient singularities
    Alessio Caminata
    Francesco Strazzanti
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2021, 62 : 857 - 870
  • [3] On graded stable derived categories of isolated Gorenstein quotient singularities
    Ueda, Kazushi
    JOURNAL OF ALGEBRA, 2012, 352 (01) : 382 - 391
  • [4] Quotient triangulated categories
    Chen, Xiao-Wu
    Zhang, Pu
    MANUSCRIPTA MATHEMATICA, 2007, 123 (02) : 167 - 183
  • [5] TRIANGULATED QUOTIENT CATEGORIES
    Liu, Yu
    Zhu, Bin
    COMMUNICATIONS IN ALGEBRA, 2013, 41 (10) : 3720 - 3738
  • [6] Quotient triangulated categories
    Xiao-Wu Chen
    Pu Zhang
    manuscripta mathematica, 2007, 123 : 167 - 183
  • [7] DERIVED CATEGORIES OF RESOLUTIONS OF CYCLIC QUOTIENT SINGULARITIES
    Krug, Andreas
    Ploog, David
    Sosna, Pawel
    QUARTERLY JOURNAL OF MATHEMATICS, 2018, 69 (02): : 509 - 548
  • [8] Gorenstein objects in triangulated categories
    Asadollahi, J
    Salarian, S
    JOURNAL OF ALGEBRA, 2004, 281 (01) : 264 - 286
  • [9] GORENSTEIN ISOLATED QUOTIENT SINGULARITIES OF ODD PRIME DIMENSION ARE CYCLIC
    Kurano, Kazuhiko
    Nishi, Shougo
    COMMUNICATIONS IN ALGEBRA, 2012, 40 (08) : 3010 - 3020
  • [10] Triangulated quotient categories revisited
    Zhou, Panyue
    Zhu, Bin
    JOURNAL OF ALGEBRA, 2018, 502 : 196 - 232