CL-20/TNT decomposition under shock: cocrystalline versus amorphous

被引:8
|
作者
Li, Yan [1 ,2 ]
Yu, Wen-Li [1 ]
Huang, Huang [2 ]
机构
[1] Xian High Tech Res Inst, Xian 710025, Peoples R China
[2] Naval Univ Engn, Wuhan 430033, Peoples R China
关键词
ENERGETIC CO-CRYSTAL; THERMAL-DECOMPOSITION; INITIAL DECOMPOSITION; FORCE-FIELD; SENSITIVITY; HNIW; STABILITY; MECHANISM; POWER;
D O I
10.1039/d1ra09120d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The cocrystallization strategy is considered to be an effective means to adjust the properties of explosives. Nevertheless, the underlying mechanism of the effect of the special cocrystal structure on the decomposition process is not clear enough. The present work compares the response processes of a CL-20/TNT cocrystal structure and an amorphous structure under shock waves with different velocities. The thermodynamic evolution, reactant decay, product formation, main initial reactions and cluster evolution are analyzed. As a result, we find that the amorphous structure is easier to compress than the cocrystal structure, achieving higher stress and temperature. These thermodynamic parameters have a strong correlation. For the amorphous structure, the chemical reaction of the system is more intense, the reactants decay faster, the products are more abundant, and the intermediate products can complete the transformation to stable products earlier. Furthermore, NO2 is the most important intermediate product, and its quantitative change can directly reflect the reaction process. The amorphous structure is more prone to decomposition reaction, and the cocrystal structure is more prone to polymerization reaction. The cluster size in the amorphous structure is smaller and more conducive to decomposition.
引用
收藏
页码:6938 / 6946
页数:9
相关论文
共 50 条
  • [1] Initial Decomposition of the Co-crystal of CL-20/TNT: Sensitivity Decrease under Shock Loading
    Zhang, Xiu-Qing
    Chen, Xiang-Rong
    Kaliamurthi, Satyavani
    Selvaraj, Gurudeeban
    Ji, Guang-Fu
    Wei, Dong-Qing
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (42): : 24270 - 24278
  • [2] Acceleration of decomposition of CL-20 explosive under nanoconfinement
    Bari, Rozana
    Denton, Aric A.
    Fondren, Zachary T.
    McKenna, Gregory B.
    Simon, Sindee L.
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2020, 140 (06) : 2649 - 2655
  • [3] Acceleration of decomposition of CL-20 explosive under nanoconfinement
    Rozana Bari
    Aric A. Denton
    Zachary T. Fondren
    Gregory B. McKenna
    Sindee L. Simon
    Journal of Thermal Analysis and Calorimetry, 2020, 140 : 2649 - 2655
  • [4] Anisotropic response of the co-crystal of CL-20/TNT under shock loading: molecular dynamics simulation
    Li, Yan
    Yu, Wen-Li
    Huang, Huang
    Zhu, Min
    Wang, Jin-Tao
    RSC ADVANCES, 2021, 11 (61) : 38383 - 38390
  • [5] Thermal properties of decomposition and explosion for CL-20 and CL-20/n-Al
    Mao, Xiaoxiang
    Li, Yanchun
    Li, Yifan
    Jiang, Longfei
    Wang, Xiaoming
    JOURNAL OF ENERGETIC MATERIALS, 2020, 38 (01) : 98 - 110
  • [6] Molecular Dynamics Simulation on CL-20/TNT Cocrystal Explosive
    Liu Qiang
    Xiao Jijun
    Zhang Jiang
    Zhao Feng
    He Zhenghua
    Xiao Heming
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2016, 37 (03): : 559 - 566
  • [7] Molecular Dynamics Simulation on Initial Decomposition Mechanism of CL-20 with Different Crystal Forms under Shock Loading
    Tang, Mei
    Zeng, Shu-Qiong
    Liu, Gui-Lin
    Niu, Zhen-Wei
    Huozhayao Xuebao/Chinese Journal of Explosives and Propellants, 2024, 47 (11): : 1000 - 1009
  • [8] Thermal decomposition of NEPE propellant with CL-20
    Xi'an Modern Chemistry Research Institute, Xi'an 710065, China
    Guti Houjian Jishu, 2008, 3 (251-254):
  • [9] Molecular Reactive Force Field Simulation on the Response of the Co-crystal of CL-20/TNT under the Coupling of Heat and Shock Wave
    Li Y.
    Yu W.-L.
    Huang H.
    Li B.
    Huozhayao Xuebao/Chinese Journal of Explosives and Propellants, 2022, 45 (04): : 486 - 493
  • [10] Atomistic simulation on pyrolysis mechanism of CL-20/TNT cocrystal explosive
    Liu H.
    Yang Z.
    He Y.-H.
    He, Yuan-Hang (heyuanhang@bit.edu.cn), 1600, China Ordnance Industry Corporation (40): : 14 - 20