Unicyclic graphs with maximum Randie indices

被引:1
|
作者
Hasni, Roslan [1 ]
Husin, Nor Hafizah Md [2 ]
Du, Zhibin [3 ]
机构
[1] Univ Malaysia Terengganu, Fac Ocean Engn Technol & Informat, Special Interest Grp Modeling & Data Analyt SIGMD, Terengganu 21030, Malaysia
[2] Univ Pendidikan Sultan Idris, Fac Sci & Math, Dept Math, Tanjong Malim 35900, Perak, Malaysia
[3] South China Normal Univ, Sch Software, Foshan 528255, Guangdong, Peoples R China
关键词
Randic? index; maximum values; unicyclic graphs; ordering; TREES;
D O I
10.22049/CCO.2021.27230.1216
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Randic index R(G) of a graph G is the sum of the weights (d(u)d(v)) (1/2) of all edges uv in G, where d(u) denotes the degree of vertex u. Du and Zhou [On Randic indices of trees, unicyclic graphs, and bicyclic graphs, Int. J. Quantum Chem. 111 (2011), 2760{2770] determined the n-vertex unicyclic graphs with the third maximum for n >= 5, the fourth maximum for n >= 7 and the fifth maximum for n >= 8. Recently, Li et al. [The Randic indices of trees, unicyclic graphs and bicyclic graphs, Ars Comb. 127 (2016), 409{419] obtained the n-vertex unicyclic graphs with the sixth maximum and the seventh maximum for n >= 9 and the eighth maximum for n >= 10. In this paper, we characterize the n-vertex unicyclic graphs with the ninth maximum, the tenth maximum, the eleventh maximum, the twelfth maximum and the thirteenth maximum of Randic values.
引用
收藏
页码:161 / 172
页数:12
相关论文
共 50 条
  • [1] On acyclic and unicyclic conjugated graphs with maximum Zagreb indices
    Li, Shuchao
    Zhao, Qin
    UTILITAS MATHEMATICA, 2011, 86 : 115 - 128
  • [2] The maximum Mostar indices of unicyclic graphs with given diameter
    Liu, Guorong
    Deng, Kecai
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 439
  • [3] Unicyclic Graphs With Maximum Geometric-Arithmetic Indices
    Husin, Nor Hafizah Md
    Du, Zhibin
    Hasni, Roslan
    ARS COMBINATORIA, 2020, 148 : 89 - 107
  • [4] Maximum Wiener Indices of Unicyclic Graphs of Given Matching Number
    Cambie, Stijn
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2019, 81 (01) : 133 - 148
  • [5] ON SZEGED INDICES OF UNICYCLIC GRAPHS
    Zhou, Bo
    Cai, Xiaochun
    Du, Zhibin
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2010, 63 (01) : 113 - 132
  • [6] Zagreb eccentricity indices of unicyclic graphs
    Qi, Xuli
    Zhou, Bo
    Li, Jiyong
    DISCRETE APPLIED MATHEMATICS, 2017, 233 : 166 - 174
  • [7] Extremal Zagreb indices of unicyclic graphs
    Chen, Shubo
    Zhou, Houqing
    ARS COMBINATORIA, 2010, 97 : 241 - 248
  • [8] Extremal Zagreb indices of unicyclic graphs
    Chen, Shubo
    Zhou, Houqing
    UTILITAS MATHEMATICA, 2019, 113 : 311 - 318
  • [9] On the Reverse Wiener Indices of Unicyclic Graphs
    Du, Zhibin
    Zhou, Bo
    ACTA APPLICANDAE MATHEMATICAE, 2009, 106 (02) : 293 - 306
  • [10] On the Reverse Wiener Indices of Unicyclic Graphs
    Zhibin Du
    Bo Zhou
    Acta Applicandae Mathematicae, 2009, 106 : 293 - 306