Unrestricted Cesàro summability of d-dimensional Fourier series and Lebesgue points

被引:7
|
作者
Weisz, Ferenc [1 ]
机构
[1] Eotvos L Univ, Dept Numer Anal, Pazmany P Setany 1-C, H-1117 Budapest, Hungary
来源
CONSTRUCTIVE MATHEMATICAL ANALYSIS | 2021年 / 4卷 / 02期
关键词
Cesaro summability; strong Hardy-Littlewood maximal function; strong Lebesgue points; MARCINKIEWICZ-FEJER MEANS; EVERYWHERE CONVERGENCE; RESPECT;
D O I
10.33205/cma.859583
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize the classical Lebesgue's theorem to multi-dimensional functions. We prove that the Ces & agrave;ro means of the Fourier series of the multi-dimensional function f is an element of L-1(logL)(d-1)(T-d)superset of L-p(T-d)(1<p <=infinity) converge to f at each strong Lebesgue point.
引用
收藏
页码:179 / 185
页数:7
相关论文
共 50 条