Modeling Non-Locally Coupled DC SQUID Arrays

被引:5
|
作者
Longhini, Patrick [1 ]
Berggren, Susan [2 ]
Palacios, Antonio [2 ]
In, Visarath [1 ]
de Escobar, Anna Leese [1 ]
机构
[1] SPAWAR SSC, San Diego, CA 92152 USA
[2] San Diego State Univ, San Diego, CA 92182 USA
关键词
Mutual coupling; nonlinear dynamical systems; numerical simulation; sensor arrays; SQUIDs;
D O I
10.1109/TASC.2011.2105455
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper we provide numerical simulations for modeling an array of non-locally coupled DC SQUIDs that are coupled through the magnetic field created by the circulating current. The motivation is based on work using an array of non-identical SQUID loops or SQIFs to produce a non-periodic voltage response with a unique anti-peak centered at the zero applied flux. Our approach differs by using an array of identical SQUID loops and varying the spacing between each of these loops. Certain distributions of spacing between SQUIDs demonstrate the anti-peak response as seen in the SQIF.
引用
收藏
页码:391 / 393
页数:3
相关论文
共 50 条
  • [1] Periodicity manifestations in the non-locally coupled maps
    Shimada, T
    Tsukada, S
    PHYSICA D-NONLINEAR PHENOMENA, 2002, 168 : 126 - 135
  • [2] Bursting synchronization in non-locally coupled maps
    de Pontes, J. C. A.
    Viana, R. L.
    Lopes, S. R.
    Batista, C. A. S.
    Batista, A. M.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (16-17) : 4417 - 4428
  • [3] Chimera States in Networks of Locally and Non-locally Coupled SQUIDs
    Hizanidis, Johanne
    Lazarides, Nikos
    Tsironis, Giorgos P.
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2019, 5
  • [4] Synchronization and suppression of chaos in non-locally coupled map lattices
    Szmoski, R. M.
    Pinto, S. E. De S.
    Van Kan, M. T.
    Batista, A. M.
    Viana, R. L.
    Lopes, S. R.
    PRAMANA-JOURNAL OF PHYSICS, 2009, 73 (06): : 999 - 1009
  • [5] Synchronization and suppression of chaos in non-locally coupled map lattices
    R. M. Szmoski
    S. E. De S. Pinto
    M. T. Van Kan
    A. M. Batista
    R. L. Viana
    S. R. Lopes
    Pramana, 2009, 73 : 999 - 1009
  • [6] Selection of spatial modes in an ensemble of non-locally coupled chaotic maps
    Shabunin, A., V
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY-PRIKLADNAYA NELINEYNAYA DINAMIKA, 2022, 30 (01): : 109 - 124
  • [7] Universality in periodicity manifestations in turbulent non-locally coupled map lattices
    Shimada, T
    Tsukada, S
    PROGRESS OF THEORETICAL PHYSICS, 2002, 108 (01): : 25 - 40
  • [8] Topology of Locally and Non-Locally Generalized Derivatives
    Prodanov, Dimiter
    FRACTAL AND FRACTIONAL, 2025, 9 (01)
  • [9] Self-organization of hierarchical structures in non-locally coupled replicator models
    Sakaguchi, H
    PHYSICS LETTERS A, 2003, 313 (03) : 188 - 191
  • [10] Coherence-incoherence patterns in a ring of non-locally coupled phase oscillators
    Omel'chenko, O. E.
    NONLINEARITY, 2013, 26 (09) : 2469 - 2498