Smoothed analysis of termination of linear programming algorithms

被引:27
|
作者
Spielman, DA [1 ]
Teng, SH
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] Boston Univ, Dept Comp Sci, Boston, MA 02215 USA
关键词
smoothed analysis; linear programming; interior-point algorithms; condition numbers;
D O I
10.1007/s10107-003-0448-9
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We perform a smoothed analysis of a termination phase for linear programming algorithms. By combining this analysis with the smoothed analysis of Renegar's condition number by Dunagan, Spielman and Teng (http://arxiv.org/abs/cs.DS/0302011) we show that the smoothed complexity of interior-point algorithms for linear programming is O(m(3) log(m/sigma)). In contrast, the best known bound on the worst-case complexity of linear programming is O(m(3) L), where L could be as large as m. We include an introduction to smoothed analysis and a tutorial on proof techniques that have been useful in smoothed analyses.
引用
收藏
页码:375 / 404
页数:30
相关论文
共 50 条
  • [1] Smoothed analysis of termination of linear programming algorithms
    Daniel A. Spielman
    Shang-Hua Teng
    Mathematical Programming, 2003, 97 : 375 - 404
  • [2] Smoothed analysis of the perceptron algorithm for linear programming
    Blum, A
    Dunagan, J
    PROCEEDINGS OF THE THIRTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2002, : 905 - 914
  • [3] Robust smoothed analysis of a condition number for linear programming
    Peter Bürgisser
    Dennis Amelunxen
    Mathematical Programming, 2012, 131 : 221 - 251
  • [4] Robust smoothed analysis of a condition number for linear programming
    Buergisser, Peter
    Amelunxen, Dennis
    MATHEMATICAL PROGRAMMING, 2012, 131 (1-2) : 221 - 251
  • [5] Smoothed analysis of condition numbers and complexity implications for linear programming
    John Dunagan
    Daniel A. Spielman
    Shang-Hua Teng
    Mathematical Programming, 2011, 126 : 315 - 350
  • [6] Smoothed analysis of condition numbers and complexity implications for linear programming
    Dunagan, John
    Spielman, Daniel A.
    Teng, Shang-Hua
    MATHEMATICAL PROGRAMMING, 2011, 126 (02) : 315 - 350
  • [7] The smoothed analysis of algorithms
    Spielman, DA
    FUNDAMENTALS OF COMPUTATIONAL THEORY, PROCEEDINGS, 2005, 3623 : 17 - 18
  • [8] Smoothed analysis of integer programming
    Heiko Röglin
    Berthold Vöcking
    Mathematical Programming, 2007, 110 : 21 - 56
  • [9] Smoothed analysis of integer programming
    Röglin, H
    Vöcking, B
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, PROCEEDINGS, 2005, 3509 : 276 - 290
  • [10] Smoothed analysis of integer programming
    Roeglin, Heiko
    Voecking, Berthold
    MATHEMATICAL PROGRAMMING, 2007, 110 (01) : 21 - 56