A Priori Error Analysis of a Discontinuous Galerkin Scheme for the Magnetic Induction Equation

被引:2
|
作者
Sarkar, Tanmay [1 ,2 ]
机构
[1] Tata Inst Fundamental Res, Ctr Applicable Math, Post Bag 6503,GKVK PO, Bangalore 560065, Karnataka, India
[2] Indian Inst Technol Jammu, Dept Math, NH 44 Bypass Rd, Jammu 181221, Jammu & Kashmir, India
关键词
Discontinuous Galerkin Methods; Magnetic Induction; Explicit Runge-Kutta Method; Error Analysis; Rate of Convergence; RUNGE-KUTTA SCHEMES; STABILIZATION; STABILITY;
D O I
10.1515/cmam-2018-0032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We perform the error analysis of a stabilized discontinuous Galerkin scheme for the initial boundary value problem associated with the magnetic induction equations using standard discontinuous Lagrange basis functions. In order to obtain the quasi-optimal convergence incorporating second- order Runge-Kutta schemes for time discretization, we need a strengthened 4/3-CFL condition (Delta t similar to h(4/3)). To overcome this unusual restriction on the CFL condition, we consider the explicit third-order Runge-Kutta scheme for time discretization. We demonstrate the error estimates in L-2-sense and obtain quasi-optimal convergence for smooth solution in space and time for piecewise polynomials with any degree l >= 1 under the standard CFL condition.
引用
收藏
页码:121 / 140
页数:20
相关论文
共 50 条
  • [1] Discontinuous Galerkin for the wave equation: a simplified a priori error analysis
    Rezaei, Neda
    Saedpanah, Fardin
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2023, 100 (03) : 546 - 571
  • [2] Stabilized discontinuous Galerkin scheme for the magnetic induction equation
    Sarkar, Tanmay
    Chandrashekar, Praveen
    [J]. APPLIED NUMERICAL MATHEMATICS, 2019, 137 : 116 - 135
  • [3] A priori error estimates of the discontinuous Galerkin method for the MEW equation
    Hozman, J.
    [J]. APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE'14), 2014, 1631 : 93 - 98
  • [4] An a priori error analysis of the local discontinuous Galerkin method for elliptic problems
    Castillo, P
    Cockburn, B
    Perugia, I
    Shötzau, D
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (05) : 1676 - 1706
  • [5] A priori error analysis of discontinuous Galerkin isogeometric analysis approximations of Burgers on surface
    Wang, Liang
    Yuan, Xinpeng
    Xiong, Chunguang
    Wu, Huibin
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 390
  • [6] A priori error analyses of a stabilized discontinuous Galerkin method
    Romkes, A
    Prudhomme, S
    Oden, JT
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2003, 46 (8-9) : 1289 - 1311
  • [7] hp non-conforming a priori error analysis of an Interior Penalty Discontinuous Galerkin BEM for the Helmholtz equation
    Nadir-Alexandre, Messai
    Sebastien, Pernet
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (12) : 2644 - 2675
  • [8] A priori error analysis for an isogeometric discontinuous Galerkin approximation for convection problems on surfaces
    Wang, Liang
    Yuan, Xinpeng
    Xiong, Chunguang
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 403
  • [9] An a priori error analysis for the coupling of local discontinuous Galerkin and boundary element methods
    Gatica, Gabriel N.
    Sayas, Francisco-Javier
    [J]. MATHEMATICS OF COMPUTATION, 2006, 75 (256) : 1675 - 1696
  • [10] Error Analysis for a Hybridizable Discontinuous Galerkin Method for the Helmholtz Equation
    Roland Griesmaier
    Peter Monk
    [J]. Journal of Scientific Computing, 2011, 49 : 291 - 310