Automated quality control for within and between studies diffusion MRI data using a non-parametric framework for movement and distortion correction

被引:182
|
作者
Bastiani, Matteo [1 ,2 ]
Cottaar, Michiel [1 ]
Fitzgibbon, Sean P. [1 ]
Suri, Sana [3 ,4 ]
Alfaro-Almagro, Fidel [1 ]
Sotiropoulos, Stamatios N. [1 ,2 ,5 ]
Jbabdi, Saad [1 ]
Andersson, Jesper L. R. [1 ]
机构
[1] Univ Oxford, Wellcome Ctr Integrat Neuroimaging, Oxford Ctr Funct Magnet Resonance Imaging Brain F, Oxford, England
[2] Univ Nottingham, Sch Med, Sir Peter Mansfield Imaging Ctr, Nottingham, England
[3] Univ Oxford, Dept Psychiat, Oxford, England
[4] Univ Oxford, Wellcome Ctr Integrat Neuroimaging, Oxford Ctr Human Brain Act OHBA, Oxford, England
[5] Queens Med Ctr, Nottingham Biomed Res Ctr, NIHR, Nottingham, England
基金
英国惠康基金; 欧洲研究理事会; 英国工程与自然科学研究理事会; 英国医学研究理事会;
关键词
Diffusion MRI; Quality control; Movement; Susceptibility; Eddy current; ECHO-PLANAR IMAGES; MOTION CORRECTION; HEAD MOTION; TRACTOGRAPHY; OPTIMIZATION; IMPACT; ROBUST; MODEL;
D O I
10.1016/j.neuroimage.2018.09.073
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Diffusion MRI data can be affected by hardware and subject-related artefacts that can adversely affect downstream analyses. Therefore, automated quality control (QC) is of great importance, especially in large population studies where visual QC is not practical. In this work, we introduce an automated diffusion MRI QC framework for single subject and group studies. The QC is based on a comprehensive, non-parametric approach for movement and distortion correction: FSL EDDY, which allows us to extract a rich set of QC metrics that are both sensitive and specific to different types of artefacts. Two different tools are presented: QUAD (QUality Assessment for DMRI), for single subject QC and SQUAD (Study-wise QUality Assessment for DMRI), which is designed to enable group QC and facilitate cross-studies harmonisation efforts.
引用
收藏
页码:801 / 812
页数:12
相关论文
共 16 条
  • [1] Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images
    Andersson, Jesper L. R.
    Graham, Mark S.
    Zsoldos, Eniko
    Sotiropoulos, Stamatios N.
    NEUROIMAGE, 2016, 141 : 556 - 572
  • [2] Towards a comprehensive framework for movement and distortion correction of diffusion MR images: Within volume movement
    Andersson, Jesper L. R.
    Graham, Mark S.
    Drobnjak, Ivana
    Zhang, Hui
    Filippini, Nicola
    Bastiani, Matteo
    NEUROIMAGE, 2017, 152 : 450 - 466
  • [3] Analyzing censored water quality data using a non-parametric approach
    She, N
    JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, 1997, 33 (03): : 615 - 624
  • [4] Comparison of EPI Distortion Correction Methods in Diffusion Tensor MRI Using a Novel Framework
    Wu, M.
    Chang, L. -C.
    Walker, L.
    Lemaitre, H.
    Barnett, A. S.
    Marenco, S.
    Pierpaoli, C.
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2008, PT II, PROCEEDINGS, 2008, 5242 : 321 - 329
  • [5] Non-parametric representation and prediction of single- and multi-shell diffusion-weighted MRI data using Gaussian processes
    Andersson, Jesper L. R.
    Sotiropoulos, Stamatios N.
    NEUROIMAGE, 2015, 122 : 166 - 176
  • [6] An Automated Big Data Quality Anomaly Correction Framework Using Predictive Analysis
    Elouataoui, Widad
    El Mendili, Saida
    Gahi, Youssef
    DATA, 2023, 8 (12)
  • [7] A drive-by bridge inspection framework using non-parametric clusters over projected data manifolds
    Cheema P.
    Alamdari M.M.
    Chang K.C.
    Kim C.W.
    Sugiyama M.
    Mechanical Systems and Signal Processing, 2022, 180
  • [8] Predicting of infected People with Corona virus (covid-19) by using Non-Parametric Quality Control Charts
    Fawzy, Heba Mostafa
    Ghalib, Asmaa
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (01): : 2115 - 2126
  • [9] Automated Modeling of Real-Time Anomaly Time Anomaly Detection using Non-Parametric Statistical Parametric Statistical Technique for Data Streams in Cloud Environments
    Smrithy, G. S.
    Balakrishnan, Ramadoss
    JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, 2019, 15 (03) : 225 - 232
  • [10] Resolution of the spatial variability in sediment composition within and between water-storage reservoirs using non-parametric statistical techniques
    Baldwin, DS
    Ford, P
    Nielsen, DL
    WATER RESEARCH, 1998, 32 (03) : 826 - 830