Sparse Subspace Clustering with Entropy-Norm

被引:0
|
作者
Bai, Liang [1 ]
Liang, Jiye [1 ]
机构
[1] Shanxi Univ, Sch Comp & Informat Technol, Key Lab Computat Intelligence & Chinese Informat, Minist Educ, Taiyuan, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
CUTS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we provide an explicit theoretical connection between Sparse subspace clustering (SSC) and spectral clustering (SC) from the perspective of learning a data similarity matrix. We show that spectral clustering with Gaussian kernel can be viewed as sparse subspace clustering with entropy-norm (SSC+E). Compared to SSC, SSC+E can obtain an analytical, symmetrical, nonnegative and nonlinearly-representational similarity matrix. Besides, SSC+E makes use of Gaussian kernel to compute the sparse similarity matrix of objects, which can avoid the complex computation of the sparse optimization program of SSC. Finally, we provide the experimental analysis to compare the efficiency and effectiveness of sparse subspace clustering and spectral clustering on ten benchmark data sets. The theoretical and experimental analysis can well help users for the selection of high-dimensional data clustering algorithms.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Self-supervised deep subspace clustering with entropy-norm
    Zhao, Guangyi
    Kou, Simin
    Yin, Xuesong
    Zhang, Guodao
    Wang, Yigang
    [J]. CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (02): : 1611 - 1623
  • [2] Self-supervised deep subspace clustering with entropy-norm
    Guangyi Zhao
    Simin Kou
    Xuesong Yin
    Guodao Zhang
    Yigang Wang
    [J]. Cluster Computing, 2024, 27 : 1611 - 1623
  • [3] K-Relations-Based Consensus Clustering With Entropy-Norm Regularizers
    Bai, Liang
    Liang, Jiye
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 35 (12) : 1 - 12
  • [4] Entropy-based active sparse subspace clustering
    Liu, Yanbei
    Liu, Kaihua
    Zhang, Changqing
    Wang, Xiao
    Wang, Shaona
    Xiao, Zhitao
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (17) : 22281 - 22297
  • [5] Entropy-based active sparse subspace clustering
    Yanbei Liu
    Kaihua Liu
    Changqing Zhang
    Xiao Wang
    Shaona Wang
    Zhitao Xiao
    [J]. Multimedia Tools and Applications, 2018, 77 : 22281 - 22297
  • [6] An ordered sparse subspace clustering algorithm based on p-Norm
    Chen, Liping
    Guo, Gongde
    Wang, Hui
    [J]. EXPERT SYSTEMS, 2021, 38 (07)
  • [7] Sparse Subspace Clustering
    Elhamifar, Ehsan
    Vidal, Rene
    [J]. CVPR: 2009 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-4, 2009, : 2782 - 2789
  • [8] Community detection method based on mixed-norm sparse subspace clustering
    Tian, Bo
    Li, Weizi
    [J]. NEUROCOMPUTING, 2018, 275 : 2150 - 2161
  • [9] Minimum Error Entropy Based Sparse Representation for Robust Subspace Clustering
    Wang, Yulong
    Tang, Yuan Yan
    Li, Luoqing
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (15) : 4010 - 4021
  • [10] Efficient lq norm based sparse subspace clustering via smooth IRLS and ADMM
    Shenfen Kuang
    HongYang Chao
    Jun Yang
    [J]. Multimedia Tools and Applications, 2017, 76 : 23163 - 23185