Enhancing the Cycling Stability of Ni-Rich LiNi0.6Co0.2Mn0.2O2 Cathode at a High Cutoff Voltage with Ta Doping

被引:76
|
作者
Chu, Binbin [2 ]
Liu, Siyang [2 ]
You, Longzhen [2 ]
Liu, Da [2 ]
Huang, Tao [3 ]
Li, Yangxing [1 ]
Yu, Aishui [2 ,3 ]
机构
[1] Huawei Technol Co LTD, Shenzhen 518129, Peoples R China
[2] Fudan Univ, Dept Chem, Collaborat Innovat Ctr Chem Energy Mat, Shanghai Key Lab Mol Catalysis & Innovat Mat,Inst, Shanghai 200438, Peoples R China
[3] Fudan Univ, Adv Mat Lab, Shanghai 200438, Peoples R China
来源
关键词
tantalum; lithium ion battery; high voltage; Ni-rich cathode; doping; LITHIUM-ION BATTERY; LAYERED OXIDE CATHODES; ELECTROCHEMICAL PERFORMANCE; SURFACE DEGRADATION; LI; PHASE; LINI0.8CO0.1MN0.1O2; SUBSTITUTION; TRANSITION; AL;
D O I
10.1021/acssuschemeng.9b05560
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ni-rich cathode materials have attracted wide attention on account of their high specific capacity. However, the poor cycle retention of Ni-rich cathode materials, especially at high voltage or high temperature, is recognized as the main obstacle for extensive commercialization. In this research, we propose a new strategy of doping NCM622 (LiNi0.6Co0.2Mn0.2O2) with Ta5+ to improve the structural stability due to the high Ta-O dissociation bond energy. XRD refinement results indicate that almost all Ta5+ are located in Li sites to play a pillar role and cation mixing is inhibited. Electrochemical impedance spectroscopy results show that the increase of charge transfer impedance during the cycling process is controlled. Owing to the stable structure, NCM622 with 0.25% Ta doping exhibits a capacity of 148.1 mAh g(-1) with retention reaching 83.6% at 1 C over 3.0-4.5 V after 100 cycles, whereas the bare NCM622 only delivers 143.4 mAh g(-1) with a retention of 80.1%. The above results signify that moderate Ta doping is a facile yet effective strategy to develop high-performance Ni-rich cathode materials.
引用
收藏
页码:3082 / 3090
页数:17
相关论文
共 50 条
  • [1] Thermal Expansion Neutralization Enhancing the Cycling Stability of Ni-Rich LiNi0.6Co0.2Mn0.2O2 Cathode Material
    Du, Kai
    Wu, Maokun
    Hu, Xinhong
    Wang, Wei-hua
    Pan, Du
    Wang, Zhenbo
    Yin, Yanfeng
    Zhao, Huiling
    Bai, Ying
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (28) : 33703 - 33711
  • [2] Improving the electrochemical performance of Ni-rich LiNi0.6Co0.2Mn0.2O2 cathode at high cutoff voltage coated with LiBO2
    Wentao Zhao
    Hailang Zhang
    Huapeng Yang
    Ionics, 2022, 28 : 5015 - 5024
  • [3] Improving the electrochemical performance of Ni-rich LiNi0.6Co0.2Mn0.2O2 cathode at high cutoff voltage coated with LiBO2
    Zhao, Wentao
    Zhang, Hailang
    Yang, Huapeng
    IONICS, 2022, 28 (11) : 5015 - 5024
  • [4] Enhancing the structure stability of Ni-rich LiNi0.6Co0.2Mn0.2O2 cathode via encapsulating in negative thermal expansion nanocrystalline shell
    Du, Kai
    Gao, Ang
    Gao, Liufei
    Sun, Shuwei
    Lu, Xia
    Yu, Caiyan
    Li, Shiyu
    Zhao, Huiling
    Bai, Ying
    NANO ENERGY, 2021, 83
  • [5] Enhanced electrochemical performance of Lithium Metasilicate-coated LiNi0.6Co0.2Mn0.2O2 Ni-rich cathode for Li -ion batteries at high cutoff voltage
    Wang, Lei
    Mu, Daobin
    Wu, Borong
    Yang, Guchang
    Gai, Liang
    Liu, Qi
    Fan, Yingjun
    Peng, Yiyuan
    Wu, Feng
    ELECTROCHIMICA ACTA, 2016, 222 : 806 - 813
  • [6] The effects of molybdenum doping on LiNi0.6Co0.2Mn0.2O2 cathode material
    Liu, Qi
    Zhao, Zhikun
    Wu, Feng
    Mu, Daobin
    Wang, Lei
    Wu, Borong
    SOLID STATE IONICS, 2019, 337 : 107 - 114
  • [7] An approach to application for LiNi0.6Co0.2Mn0.2O2 cathode material at high cutoff voltage by TiO2 coating
    Chen, Yanping
    Zhang, Yun
    Chen, Baojun
    Wang, Zongyi
    Lu, Chao
    JOURNAL OF POWER SOURCES, 2014, 256 : 20 - 27
  • [8] Understanding improved cycling and thermal stability of compositionally graded Ni-rich layered LiNi 0.6 Mn 0.2 Co 0.2 O 2 cathode materials
    Bak, Seong-Min
    Song, Myeongjun
    Shadike, Zulipiya
    Hunt, Adrian
    Waluyo, Iradwikanari
    Sadowski, Jerzy T.
    Yan, Hanfei
    Chu, Yong S.
    Yang, Xiao-Qing
    Huang, Xiaojing
    Shin, Youngho
    NANO ENERGY, 2024, 126
  • [9] Triisopropyl borate as an electrolyte additive for improving the high voltage stability of LiNi0.6Co0.2Mn0.2O2 cathode
    Qin, Zhaoming
    Hong, Shu
    Hong, Bo
    Duan, Boyu
    Lai, Yanqing
    Feng, Jiang
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2019, 854
  • [10] Facile synthesis of hierarchical porous Ni-rich LiNi0.6Co0.2Mn0.2O2 cathode material with superior high-rate capability
    Liu, Wenyuan
    Hua, Weibo
    Zheng, Zhuo
    Zhong, Benhe
    Zhang, Zhiye
    IONICS, 2016, 22 (10) : 1781 - 1790