Spatio-Temporal Modeling of Field Surveyed Backsheet Degradation

被引:3
|
作者
Wieser, Raymond J. [1 ]
Rath, Kunal [1 ]
Moffitt, Stephanie L. [2 ]
Zabalza, Ruben [3 ]
Boucher, Evan [3 ]
Ayala, Silvana [4 ]
Brown, Matthew [4 ]
Gu, Xiaohong [2 ]
Ji, Liang [2 ]
O'Brien, Colleen [2 ]
Hauser, Adam W. [6 ]
O'Brien, Greg S. [6 ]
French, Roger H. [1 ]
Kempe, Micheal D. [4 ]
Tracy, Jared [5 ]
Choudhury, Kausik R. [5 ]
Gambogi, William J. [5 ]
Bruckman, Laura S. [1 ]
Boyce, Kenneth P. [2 ]
机构
[1] Case Western Reserve Univ, Cleveland, OH 44106 USA
[2] NIST, Gaithersburg, MD 20878 USA
[3] Underwriter Labs, Northbrook, IL 60062 USA
[4] Nat Renewalbe Energy Lab, Golden, CO 80401 USA
[5] DuPont Co Inc, Wilmington, DE 98327 USA
[6] Arkema, King Of Prussia, PA 19406 USA
关键词
Backsheet; Degradation; Spatio-temporal; Modeling; Field Survey; PV MODULE;
D O I
10.1109/PVSC43889.2021.9519128
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Assessing photovoltaic module backsheet durability is critical to increasing module lifetime. Lab based accelerating testing has recently failed to predict large scale failures of widely adopted polymeric materials. Field surveyed data is critical to assess the performance of component lifetime. Using a documented field survey protocol, 13 field surveys where conducted. Each measurement is encoded with it's spatial location in respect to the other modules. By combining field survey data on degradation predictors with real time satellite weather data, data-driven predictive models of backsheet degradation were trained. LOESS models were constructed to investigate the spatial dependence of measurements. It was found that micro-climatic effects like tree-lines, ground surface changes, and elevation changes effected the magnitude and variance of the measurements. A GAM model was created to predict the value of degradation based on measured predictors. The model includes variables on the climate of the system and the location of each measurement in the PV mounting structure. The model performed well with an adj:R-2 of 0:95 for yellowness index prediction. The model was cross-validated using k-folds.
引用
收藏
页码:1383 / 1388
页数:6
相关论文
共 50 条
  • [1] Generalized Spatio-Temporal Model of Backsheet Degradation From Field Surveys of Photovoltaic Modules
    Wang, Yu
    Huang, Wei-Heng
    Fairbrother, Andrew
    Fridman, Lucas S.
    Curran, Alan J.
    Wheeler, Nicholas R.
    Napoli, Sophie
    Hauser, Adam W.
    Julien, Scott
    Gu, Xiaohong
    O'Brien, Gregory S.
    Wan, Kai-Tak
    Ji, Liang
    Kempe, Michael D.
    Boyce, Kenneth P.
    French, Roger H.
    Bruckman, Laura S.
    [J]. IEEE JOURNAL OF PHOTOVOLTAICS, 2019, 9 (05): : 1374 - 1381
  • [2] Modeling spatio-temporal field evolution
    Borstnik Bracic, A.
    Grabec, I.
    Govekar, E.
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2009, 69 (04): : 529 - 538
  • [3] Modeling spatio-temporal field evolution
    A. Borštnik Bračič
    I. Grabec
    E. Govekar
    [J]. The European Physical Journal B, 2009, 69 : 529 - 538
  • [4] A statistical modeling approach for spatio-temporal degradation data
    Liu, Xiao
    Yeo, Kyongmin
    Kalagnanam, Jayant
    [J]. JOURNAL OF QUALITY TECHNOLOGY, 2018, 50 (02) : 166 - 182
  • [5] Modeling spatio-temporal nonlocality in mean-field dynamos
    Rheinhardt, M.
    Brandenburg, A.
    [J]. ASTRONOMISCHE NACHRICHTEN, 2012, 333 (01) : 71 - 77
  • [6] A Spatio-Temporal Linked Data Representation for Modeling Spatio-Temporal Dialect Data
    Scholz, Johannes
    Hrastnig, Emanual
    Wandl-Vogt, Eveline
    [J]. PROCEEDINGS OF WORKSHOPS AND POSTERS AT THE 13TH INTERNATIONAL CONFERENCE ON SPATIAL INFORMATION THEORY (COSIT 2017), 2018, : 275 - 282
  • [7] Segmentations of spatio-temporal images by spatio-temporal Markov random field model
    Kamijo, S
    Ikeuchi, K
    Sakauchi, M
    [J]. ENERGY MINIMIZATION METHODS IN COMPUTER VISION AND PATTERN RECOGNITION, 2001, 2134 : 298 - 313
  • [8] Temporal aggregation and spatio-temporal traffic modeling
    Percoco, Marco
    [J]. JOURNAL OF TRANSPORT GEOGRAPHY, 2015, 46 : 244 - 247
  • [9] Modeling consistency of spatio-temporal graphs
    Del Mondo, G.
    Rodriguez, M. A.
    Claramunt, C.
    Bravo, L.
    Thibaud, R.
    [J]. DATA & KNOWLEDGE ENGINEERING, 2013, 84 : 59 - 80
  • [10] Spatio-temporal BRDF: Modeling and synthesis
    Meister, Daniel
    Pospíšil, Adam
    Sato, Imari
    Bittner, Jiří
    [J]. Computers and Graphics (Pergamon), 2021, 97 : 279 - 291