Enhanced Electrochemical Performance and Durability of the BaCo0.4Fe0.4Zr0.1Y0.1O3-δ Composite Cathode of Protonic Ceramic Fuel Cells via Forming Nickel Oxide Nanoparticles

被引:27
|
作者
Lee, Hyungjun [1 ]
Jung, Hoyeon [1 ]
Kim, Chanho [1 ]
Kim, Sungmin [1 ]
Jang, Inyoung [1 ]
Yoon, Heesung [1 ]
Paik, Ungyu [1 ]
Song, Taeseup [1 ]
机构
[1] Hanyang Univ, Dept Energy Engn, Seoul 133791, South Korea
关键词
protonic ceramic fuel cell; cathode material; nanoparticles; nickel oxide; surface-exchange reaction; CERATE-ZIRCONATE ELECTROLYTES; OXYGEN REDUCTION REACTION; ELECTRICAL-CONDUCTIVITY; SURFACE MODIFICATION; TEMPERATURE; FABRICATION; PEROVSKITE; ELECTROCATALYSTS; MECHANISMS; GENERATION;
D O I
10.1021/acsaem.1c02311
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In protonic ceramic fuel cells (PCFCs), oxygen reduction reaction activity is governed by the oxygen adsorption/dissociation, proton conduction, and electron transfer kinetics. Although various strategies have been explored to enhance the proton and electron conductivity via tuning the oxygen vacancy concentration in the electrode materials and introducing electronic conducting agents, there are few studies on improving oxygen adsorption/dissociation (surface-exchange reaction) kinetics in PCFCs. In this study, we report uniformly distributed thermodynamically stable nickel oxide (NiO) nanoparticles as a catalyst to enhance the electrochemical performance of the BaCo0.4Fe0.4Zr0.1Y0.1O3-delta (BCFZY) cathode, which is a promising cathode material because of its triple (oxygen ion, proton, and electron) conductivity in PCFCs, by improving surface-exchange reaction kinetics. The 0D NiO nanoparticles with high adsorption and fast dissociation ability of oxygen could enlarge the active sites for surface-exchange reactions without fading the BCFZY surface and triple-phase boundaries where the H2O formation reaction occurs. The cathode employing NiO nanoparticles exhibits largely reduced polarization resistance and a superior power density of 780 mW/cm(2) at 600 degrees C. This improvement is attributed to the enhanced surface-exchange reaction kinetics.
引用
收藏
页码:11564 / 11573
页数:10
相关论文
共 50 条
  • [1] Tuning the defects of the triple conducting oxide BaCo0.4Fe0.4Zr0.1Y0.1O3-δ perovskite toward enhanced cathode activity of protonic ceramic fuel cells
    Ren, Rongzheng
    Wang, Zhenhua
    Xu, Chunming
    Sun, Wang
    Qiao, Jinshuo
    Rooney, David W.
    Sun, Kening
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (31) : 18365 - 18372
  • [2] Pulsed laser deposition of BaCo0.4Fe0.4Zr0.1Y0.1O3-δ cathode for solid oxide fuel cells
    Ryu, Sangbong
    Lee, Sanghoon
    Jeong, Wonyeop
    Pandiyan, Arunkumar
    Moorthy, Suresh Babu Krishna
    Chang, Ikwhang
    Park, Taehyun
    Cha, Suk Won
    SURFACE & COATINGS TECHNOLOGY, 2019, 369 : 265 - 268
  • [3] Oxygen exchange and bulk diffusivity of BaCo0.4Fe0.4Zr0.1Y0.1O3-δ: Quantitative assessment of active cathode material for protonic ceramic fuel cells
    Meng, Yuqing
    Duffy, Jack
    Na, Beom Tak
    Gao, Jun
    Yang, Tao
    Tong, Jianhua
    Lee, Shiwoo
    Brinkman, Kyle S.
    SOLID STATE IONICS, 2021, 368
  • [4] Reaction tuned formation of hierarchical BaCo0.4Fe0.4Zr0.1Y0.1O3-δ cathode
    Qi, Huiying
    Zhao, Zhe
    Tu, Baofeng
    Cheng, Mojie
    JOURNAL OF POWER SOURCES, 2020, 455
  • [5] Enhanced ORR activity of A-site deficiency engineered BaCo0.4Fe0.4Zr0.1Y0.1O3-δ cathode in practical YSZ fuel cells
    Wang, Wei
    Zhang, Xiaozhen
    Khan, Kashif
    Wu, Haodong
    Zhang, Dandan
    Yang, Yang
    Jiang, Yuhua
    Lin, Bin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (07) : 5593 - 5603
  • [6] Characterization and optimization of highly active and Ba-deficient BaCo0.4Fe0.4Zr0.1Y0.1O3-δ-based cathode materials for protonic ceramics fuel cells
    Wei, Kangwei
    Li, Na
    Wu, Yujie
    Song, Wenchao
    Wang, Xinxin
    Guo, Litong
    Khan, Majid
    Wang, Shaorong
    Zhou, Fubao
    Ling, Yihan
    CERAMICS INTERNATIONAL, 2019, 45 (15) : 18583 - 18591
  • [7] Fluorination inductive effect enables rapid bulk proton diffusion in BaCo0.4Fe0.4Zr0.1Y0.1O3-δ perovskite oxide for high-activity protonic ceramic fuel cell cathode
    Ren, Rongzheng
    Yu, Xiaodan
    Wang, Zhenhua
    Xu, Chunming
    Song, Tinglu
    Sun, Wang
    Qiao, Jinshuo
    Sun, Kening
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2022, 317
  • [8] Nanostructured BaCo0.4Fe0.4Zr0.1Y0.1O3-δ Cathodes with Different Microstructural Architectures
    dos Santos-Gomez, Lucia
    Zamudio-Garcia, Javier
    Porras-Vazquez, Jose M.
    Losilla, Enrique R.
    Marrero-Lopez, David
    NANOMATERIALS, 2020, 10 (06)
  • [9] BaCo0.4Fe0.4Zr0.1Y0.1O3-δ triple conductor for boosting electrode efficiency for proton conducting fuel cells
    Kim, Chanho
    Lee, Hyungjun
    Jang, Inyoung
    Kim, Sungmin
    Jung, Hoyeon
    Ryu, Myeungwoo
    Kim, Jeongheon
    Lee, Dongsoo
    Yoon, Heesung
    Paik, Ungyu
    Song, Taeseup
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (08) : 5499 - 5506
  • [10] Nickel-doped BaCo0.4Fe0.4Zr0.1Y0.1O3-δ as a new high-performance cathode for both oxygen-ion and proton conducting fuel cells
    Liang, Mingzhuang
    He, Fan
    Zhou, Chuan
    Chen, Yubo
    Ran, Ran
    Yang, Guangming
    Zhou, Wei
    Shao, Zongping
    CHEMICAL ENGINEERING JOURNAL, 2021, 420