Sign problem in finite density lattice QCD

被引:21
|
作者
Goy, V. A. [1 ,2 ]
Bornyakov, V [2 ,3 ]
Boyda, D. [2 ]
Molochkov, A. [2 ]
Nakamura, A. [2 ,4 ,5 ]
Nikolaev, A. [2 ]
Zakharov, V [2 ,6 ]
机构
[1] Far Eastern Fed Univ, Sch Nat Sci, Sukhanova 8, Vladivostok 690950, Russia
[2] Far Eastern Fed Univ, Sch Biomed, Sukhanova 8, Vladivostok 690950, Russia
[3] ITEP, B Cheremushkinskaya 25, Moscow 117218, Russia
[4] Osaka Univ, RCNP, Ibaraki, Osaka 5670047, Japan
[5] RIKEN, Nishina Ctr, Theoret Res Div, Wako, Saitama 3510198, Japan
[6] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Region, Russia
来源
基金
俄罗斯科学基金会;
关键词
D O I
10.1093/ptep/ptx018
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The canonical approach, which was developed for solving the sign problem, may suffer from a new type of sign problem. In this method, the grand partition function is written as a fugacity expansion: Z(G)(mu, T) = Sigma(n) Z(C)(n, T)xi(n), where xi = exp(mu/T) is the fugacity, and Z(C)(n, T) are given as averages over a Monte Carlo update, z(n). We show that the complex phase of z(n) is proportional to n at each Monte Carlo step. Although z(n) take real positive values, the values of z(n) fluctuate rapidly when n is large, especially in the confinement phase, which gives a limit on n. We discuss a mechanism of phase emergence.
引用
收藏
页数:8
相关论文
共 50 条