On a nontrivial knot projection under (1,3) homotopy

被引:2
|
作者
Ito, Noboru [1 ,3 ]
Takimura, Yusuke [2 ]
机构
[1] Waseda Inst Adv Study, Shinjuku Ku, 1-6-1 Nishi Waseda, Tokyo 1698050, Japan
[2] Gakushuin Boys Jr High Sch, Toshima Ku, 1-5-1 Mejiro, Tokyo 1710031, Japan
[3] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
关键词
Knot projections; Ostlund conjecture; Reidemeister moves; Spherical curves;
D O I
10.1016/j.topol.2016.07.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In 2001, Ostlund formulated the question: are Reidemeister moves of types 1 and 3 sufficient to describe a homotopy from any generic immersion of a circle in a two-dimensional plane to an embedding of the circle? The positive answer to this question was treated as a conjecture (Ostlund conjecture). In 2014, Hagge and Yazinski disproved the conjecture by showing the first counterexample with a minimal crossing number of 16. This example is naturally extended to counterexamples with given even minimal crossing numbers more than 14. This paper obtains the first counterexample with a minimal crossing number of 15. This example is naturally extended to counterexamples with given odd minimal crossing numbers more than 13. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:22 / 28
页数:7
相关论文
共 50 条
  • [1] Positive knots and weak (1,3) homotopy
    Ito, Noboru
    Takimura, Yusuke
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2020, 29 (09) : 1DUMNY
  • [2] Every nontrivial knot in S3 has nontrivial A-polynomial
    Boyer, S
    Zhang, XR
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (09) : 2813 - 2815
  • [3] KNOT HOMOTOPY IN SUBSPACES OF THE 3-SPHERE
    Koda, Yuya
    Ozawa, Makoto
    PACIFIC JOURNAL OF MATHEMATICS, 2016, 282 (02) : 389 - 414
  • [4] STRONG AND WEAK (1,3) HOMOTOPIES ON KNOT PROJECTIONS
    Ito, Noboru
    Takimura, Yusuke
    Taniyama, Kouki
    OSAKA JOURNAL OF MATHEMATICS, 2015, 52 (03) : 617 - 646
  • [5] (1,2) AND WEAK (1,3) HOMOTOPIES ON KNOT PROJECTIONS
    Ito, Noboru
    Takimura, Yusuke
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2013, 22 (14)
  • [6] Chains Homotopy in the Complement of a Knot in the Sphere S3
    Barrera, W.
    Cano, A.
    Garcia, R.
    Navarrete, J. P.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2019, 50 (04): : 971 - 997
  • [7] DIFFERENTIABLE GROUP ACTIONS ON HOMOTOPY SPHERES .1. DIFFERENTIAL STRUCTURE AND KNOT INVARIANT
    SCHULTZ, R
    INVENTIONES MATHEMATICAE, 1975, 31 (02) : 105 - 128
  • [8] One Pot Synthesis of [1,3]-Oxazine and [1,3]-Thiazine Derivatives Under Thermal and Microwave Conditions
    Tumtin, S.
    Phucho, I. T.
    Nongpiur, A.
    Nongrum, R.
    Vishwakarma, J. N.
    Myrboh, B.
    Nongkhlaw, R. L.
    JOURNAL OF HETEROCYCLIC CHEMISTRY, 2010, 47 (01) : 125 - 130
  • [9] How to knot bury and not break the suture: the 3-1-bury-1 knot
    Deveau, Adam P.
    Seamone, Mark E.
    Lewis, Darrell R.
    Gupta, R. Rishi
    CANADIAN JOURNAL OF OPHTHALMOLOGY-JOURNAL CANADIEN D OPHTALMOLOGIE, 2019, 54 (06): : E311 - E313
  • [10] Diastereoselective synthesis of fused [1,3]thiazolo[1,3]oxazins and [1,3]oxazino[2,3-b][1,3]benzothiazoles
    Issa Yavari
    Zinatossadat Hossaini
    Sanaz Souri
    Samereh Seyfi
    Molecular Diversity, 2009, 13 : 439 - 443