Zero Expectile Processes and Bayesian Spatial Regression

被引:7
|
作者
Majumdar, Anandamayee [1 ]
Paul, Debashis [2 ]
机构
[1] Soochow Univ, Ctr Adv Stat & Econometr, Suzhou, Peoples R China
[2] Univ Calif Davis, Dept Stat, Davis, CA 95616 USA
基金
美国国家科学基金会;
关键词
Bayesian modeling; Double normal process; Expectile; Markov chain Monte Carlo; Posterior inference; Spatial statistics;
D O I
10.1080/10618600.2015.1062014
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce new classes of stationary spatial processes with asymmetric, sub Gaussian marginal distributions using the idea of expectiles. We derive theoretical properties of the proposed processes. Moreover, we use the proposed spatial processes to formulate a spatial regression model for point-referenced data where the spatially correlated errors have skewed marginal distribution. We introduce a Bayesian computational procedure for model fitting and inference for this class of spatial regression models. We compare the performance of the proposed method with the traditional Gaussian process-based spatial regression through simulation studies and by applying it to a dataset on air pollution in California.
引用
收藏
页码:727 / 747
页数:21
相关论文
共 50 条
  • [1] Bayesian regularisation in geoadditive expectile regression
    Elisabeth Waldmann
    Fabian Sobotka
    Thomas Kneib
    [J]. Statistics and Computing, 2017, 27 : 1539 - 1553
  • [2] Bayesian regularisation in geoadditive expectile regression
    Waldmann, Elisabeth
    Sobotka, Fabian
    Kneib, Thomas
    [J]. STATISTICS AND COMPUTING, 2017, 27 (06) : 1539 - 1553
  • [3] Bayesian expectile regression with asymmetric normal distribution
    Xing, Ji-Ji
    Qian, Xi-Yuan
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (09) : 4545 - 4555
  • [4] Expectile regression for spatial functional data analysis (sFDA)
    Mustapha Rachdi
    Ali Laksaci
    Noriah M. Al-Kandari
    [J]. Metrika, 2022, 85 : 627 - 655
  • [5] Expectile regression for spatial functional data analysis (sFDA)
    Rachdi, Mustapha
    Laksaci, Ali
    Al-Kandari, Noriah M.
    [J]. METRIKA, 2022, 85 (05) : 627 - 655
  • [6] A Discrete Density Approach to Bayesian Quantile and Expectile Regression with Discrete Responses
    Xi Liu
    Xueping Hu
    Keming Yu
    [J]. Journal of Statistical Theory and Practice, 2021, 15
  • [7] Expectile regression forest: A new nonparametric expectile regression model
    Cai, Chao
    Dong, Haotian
    Wang, Xinyi
    [J]. EXPERT SYSTEMS, 2023, 40 (01)
  • [8] A Discrete Density Approach to Bayesian Quantile and Expectile Regression with Discrete Responses
    Liu, Xi
    Hu, Xueping
    Yu, Keming
    [J]. JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2021, 15 (03)
  • [9] Geoadditive expectile regression
    Sobotka, Fabian
    Kneib, Thomas
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (04) : 755 - 767
  • [10] Bayesian Spatial Quantile Regression
    Reich, Brian J.
    Fuentes, Montserrat
    Dunson, David B.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (493) : 6 - 20