Algorithms for model-based Gaussian hierarchical clustering

被引:156
|
作者
Fraley, C [1 ]
机构
[1] Univ Washington, Dept Stat, Seattle, WA 98195 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 1998年 / 20卷 / 01期
关键词
hierarchical agglomeration; mixture models; model-based cluster analysis;
D O I
10.1137/S1064827596311451
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Agglomerative hierarchical clustering methods based on Gaussian probability models have recently shown promise in a variety of applications. In this approach, a maximum-likelihood pair of clusters is chosen for merging at each stage. Unlike classical methods, model-based methods reduce to a recurrence relation only in the simplest case, which corresponds to the classical sum of squares method. We show how the structure of the Gaussian model can be exploited to yield efficient algorithms for agglomerative hierarchical clustering.
引用
收藏
页码:270 / 281
页数:12
相关论文
共 50 条