A NON-STATIONARY HIDDEN MARKOV MODEL OF MULTIVIEW VIDEO TRAFFIC

被引:7
|
作者
Rossi, Lorenzo [1 ]
Chakareski, Jacob [2 ]
Frossard, Pascal [2 ]
Colonnese, Stefania [1 ]
机构
[1] Univ Roma La Sapienza, INFOCOM Dept, Via Eudossiana 18, I-00184 Rome, Italy
[2] Ecole Polytech Fed Lausanne, LTS4, CH-1015 Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
D O I
10.1109/ICIP.2010.5652844
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Multiview video is increasingly getting attention due to emerging applications such as 3DTV and immersive teleconferencing. In this paper, we present a non-stationary Hidden Markov Model (HMM) for characterizing the data rate of compressed multiview content. The states of the model correspond to different video activity levels and exhibit a Poisson state duration distribution. We derive a stable maximum likelihood algorithm for estimating the parameters of our multiview traffic model. Synthetic data generated by the model exhibits statistics that closely match those of actual multiview data. In addition, we demonstrate the high accuracy of the model in two multiview streaming applications by evaluating the frame loss rate of a constrained network buffer fed by actual and synthetic data.
引用
收藏
页码:2921 / 2924
页数:4
相关论文
共 50 条
  • [1] A Poisson Hidden Markov Model for Multiview Video Traffic
    Rossi, Lorenzo
    Chakareski, Jacob
    Frossard, Pascal
    Colonnese, Stefania
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2015, 23 (02) : 547 - 558
  • [2] A reservoir-driven non-stationary hidden Markov model
    Chatzis, Sotirios P.
    Demiris, Yiannis
    PATTERN RECOGNITION, 2012, 45 (11) : 3985 - 3996
  • [3] A non-stationary hidden Markov model for satellite propagation channel Modeling
    Lin, HP
    Tseng, MJ
    Tsai, FS
    IEEE 56TH VEHICULAR TECHNOLOGY CONFERENCE, VTC FALL 2002, VOLS 1-4, PROCEEDINGS, 2002, : 2485 - 2488
  • [4] Predicting Spectrum Occupancies Using a Non-Stationary Hidden Markov Model
    Chen, Xianfu
    Zhang, Honggang
    MacKenzie, Allen B.
    Matinmikko, Marja
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2014, 3 (04) : 333 - 336
  • [5] A hidden Markov model for non-stationary runoff modeling conditioned on El Nino information
    Gelati, E.
    Rosbjerg, D.
    Madsen, H.
    FROM HEADWATERS TO THE OCEAN: HYDROLOGICAL CHANGES AND WATERSHED MANAGEMENT, 2009, : 237 - +
  • [6] Equipment PHM using non-stationary segmental hidden semi-Markov model
    Dong, Ming
    Peng, Ying
    ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2011, 27 (03) : 581 - 590
  • [7] Principles of non-stationary Hidden Markov Model and its applications to sequence labeling task
    Xiao, JH
    Liu, BQ
    Wang, XL
    NATURAL LANGUAGE PROCESSING - IJCNLP 2005, PROCEEDINGS, 2005, 3651 : 827 - 837
  • [8] Unsupervised segmentation of hidden semi-Markov non-stationary chains
    Lapuyade-Lahorgue, Jerome
    Pieczynski, Wojciech
    SIGNAL PROCESSING, 2012, 92 (01) : 29 - 42
  • [9] Model-based noise suppression using unsupervised estimation of hidden Markov model for non-stationary noise
    Fujimoto, Masakiyo
    Nakatani, Tomohiro
    14TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2013), VOLS 1-5, 2013, : 2981 - 2985
  • [10] Modelling fading properties for mobile satellite link channels using non-stationary hidden Markov model
    Lin, H. -P.
    Tseng, M. -C.
    IET MICROWAVES ANTENNAS & PROPAGATION, 2009, 3 (01) : 171 - 180