GLOBAL MAGNETIC CONFINEMENT FOR THE 1.5D VLASOV-MAXWELL SYSTEM

被引:17
|
作者
Nguyen, Toan T. [1 ]
Nguyen, Truyen V. [2 ]
Strauss, Walter A. [3 ]
机构
[1] Penn State Univ, Dept Math, State Coll, PA 16802 USA
[2] Univ Akron, Dept Math, Akron, OH 44325 USA
[3] Brown Univ, Dept Math, Lefschetz Ctr Dynamical Syst, Providence, RI 02912 USA
基金
美国国家科学基金会;
关键词
Vlasov-Maxwell system; global smooth solution; magnetic confinement; boundary conditions; BOUNDARY-CONDITIONS; WEAK SOLUTIONS; PLASMA;
D O I
10.3934/krm.2015.8.153
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish the global-in-time existence and uniqueness of classical solutions to the "one and one-half" dimensional relativistic Vlasov Maxwell systems in a bounded interval, subject to an external magnetic field which is infinitely large at the spatial boundary. We prove that the large external magnetic field confines the particles to a compact set away from the boundary. This excludes the known singularities that typically occur due to particles that repeatedly bounce off the boundary. In addition to the confinement, we follow the techniques introduced by Glassey and Schaeffer, who studied the Cauchy problem without boundaries.
引用
收藏
页码:153 / 168
页数:16
相关论文
共 50 条
  • [1] GLOBAL MAGNETIC CONFINEMENT FOR THE 1.5D VLASOV-MAXWELL SYSTEM (vol 8, pg 153, 2015)
    Nguyen, Toan T.
    Nguyen, Truyen V.
    Strauss, Walter A.
    [J]. KINETIC AND RELATED MODELS, 2015, 8 (03) : 615 - 616
  • [2] Hamiltonian fluid reduction of the 1.5D Vlasov-Maxwell equations
    Chandre, C.
    Shadwick, B. A.
    [J]. PHYSICS OF PLASMAS, 2021, 28 (09)
  • [3] MAGNETIC CONFINEMENT FOR THE 2D AXISYMMETRIC RELATIVISTIC VLASOV-MAXWELL SYSTEM IN AN ANNULUS
    Jang, Jin Woo
    Strain, Robert M.
    Wong, Tak Kwong
    [J]. KINETIC AND RELATED MODELS, 2022, 15 (04) : 569 - 604
  • [4] Global Classical Solutions of the 1.5D Relativistic Vlasov-Maxwell-Chern-Simons System
    Chen, Jing
    Bazighifan, Omar
    Luo, Chengjun
    Song, Yanlai
    [J]. AXIOMS, 2023, 12 (07)
  • [5] ON THE VLASOV-MAXWELL SYSTEM WITH A STRONG MAGNETIC FIELD
    Filbet, Francis
    Xiong, Tao
    Sonnendrucker, Eric
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2018, 78 (02) : 1030 - 1055
  • [6] On Global Classical Limit of the (Relativistic) Vlasov-Maxwell System
    Li, Donghao
    Liu, Ling
    Zhang, Hongwei
    [J]. JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2023, 30 (04) : 1680 - 1699
  • [7] On the controllability of the relativistic Vlasov-Maxwell system
    Glass, Olivier
    Han-Kwan, Daniel
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 103 (03): : 695 - 740
  • [8] On bifurcation of solutions to the Vlasov-Maxwell system
    Sidorov, NA
    Sinitsyn, AV
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 1996, 37 (06) : 1199 - 1211
  • [9] Instability of nonmonotone magnetic equilibria of the relativistic Vlasov-Maxwell system
    Ben-Artzi, Jonathan
    [J]. NONLINEARITY, 2011, 24 (12) : 3353 - 3389
  • [10] Hamiltonian gyrokinetic Vlasov-Maxwell system
    Burby, J. W.
    Brizard, A. J.
    Morrison, P. J.
    Qin, H.
    [J]. PHYSICS LETTERS A, 2015, 379 (36) : 2073 - 2077