Topological susceptibility for the SU(3) Yang-Mills theory

被引:1
|
作者
Del Debbio, L
Giusti, L [1 ]
Pica, C
机构
[1] CERN, Dept Phys, TH Div, CH-1211 Geneva 23, Switzerland
[2] CNRS Marseille Luminy, Ctr Phys Theor, F-13288 Marseille 9, France
[3] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy
[4] Ist Nazl Fis Nucl, I-56127 Pisa, Italy
关键词
D O I
10.1016/j.nuclphysbps.2004.11.321
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We present the results of a computation of the topological susceptibility in the SU(3) Yang-Mills theory performed by employing the expression of the topological charge density operator suggested by Neuberger's r(o)(4)chi = 0.059(3), which corresponds to chi = (191 +/- 5 MeV)(4) if F-K is used to set the scale. Our result supports the Witten-Veneziano explanation for the large mass of the eta'.
引用
收藏
页码:603 / 605
页数:3
相关论文
共 50 条
  • [1] Topological susceptibility at zero and finite T in SU(3) Yang-Mills theory
    Alles, B
    DElia, M
    DiGiacomo, A
    [J]. NUCLEAR PHYSICS B, 1997, 494 (1-2) : 281 - 292
  • [2] RENORMALIZATION AND TOPOLOGICAL SUSCEPTIBILITY ON THE LATTICE - SU(2) YANG-MILLS THEORY
    ALLES, B
    CAMPOSTRINI, M
    DIGIACOMO, A
    GUNDUC, Y
    VICARI, E
    [J]. PHYSICAL REVIEW D, 1993, 48 (05): : 2284 - 2289
  • [3] The topological susceptibility slope χ′ of the pure-gauge SU(3) Yang-Mills theory
    Bonanno, Claudio
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2024, 2024 (01)
  • [4] The topological susceptibility slope χ′ of the pure-gauge SU(3) Yang-Mills theory
    Claudio Bonanno
    [J]. Journal of High Energy Physics, 2024
  • [5] Topological susceptibility through the deconfinement phase transition in SU(3) Yang-Mills theory
    Alles, B
    DElia, M
    DiGiacomo, A
    [J]. NUCLEAR PHYSICS B, 1997, : 348 - 352
  • [6] THE TOPOLOGICAL SUSCEPTIBILITY OF THE PURE SU(3) YANG-MILLS VACUUM ON THE LATTICE
    CAMPOSTRINI, M
    DIGIACOMO, A
    GUNDUC, Y
    LOMBARDO, MP
    PANAGOPOULOS, H
    TRIPICCIONE, R
    [J]. PHYSICS LETTERS B, 1990, 252 (03) : 436 - 442
  • [7] Center vortex model for the infrared sector of SU(3) Yang-Mills theory: Topological susceptibility
    Engelhardt, M.
    [J]. PHYSICAL REVIEW D, 2011, 83 (02):
  • [8] The topological susceptibility in the large-N limit of SU(N) Yang-Mills theory
    Ce, Marco
    Vera, Miguel Garcia
    Giustie, Leonardo
    Schaefer, Stefan
    [J]. PHYSICS LETTERS B, 2016, 762 : 232 - 236
  • [9] Topological susceptibility in SU(2) Yang-Mills theory in the Hamiltonian approach in Coulomb gauge
    Campagnari, Davide R.
    Reinhardt, Hugo
    [J]. PHYSICAL REVIEW D, 2008, 78 (08):
  • [10] Topological quantization of instantons in SU(2) Yang-Mills theory
    Zhong, Wo-Jun
    Duan, Yi-Shi
    [J]. CHINESE PHYSICS LETTERS, 2008, 25 (05) : 1534 - 1537