Fourier coefficients of minimal and next-to-minimal automorphic representations of simply-laced groups

被引:3
|
作者
Gourevitch, Dmitry [1 ]
Gustafsson, Henrik P. A. [2 ,3 ,4 ,5 ,6 ]
Kleinschmidt, Axel [7 ,8 ]
Persson, Daniel [9 ]
Sahi, Siddhartha [4 ]
机构
[1] Weizmann Inst Sci, Fac Math & Comp Sci, POB 26, IL-76100 Rehovot, Israel
[2] Stanford Univ, Dept Math, Stanford, CA 94305 USA
[3] Inst Adv Study, Sch Math, Princeton, NJ 08540 USA
[4] Rutgers State Univ, Dept Math, Hill Ctr Busch Campus,110 Frelinghuysen Rd, Piscataway, NJ 08854 USA
[5] Univ Gothenburg, Dept Math Sci, SE-41296 Gothenburg, Sweden
[6] Chalmers Univ Technol, SE-41296 Gothenburg, Sweden
[7] Albert Einstein Inst, Max Planck Inst Gravitat Phys, Muhlenberg 1, DE-14476 Potsdam, Germany
[8] ULB, Int Solvay Inst, Campus Plaine CP231, BE-1050 Brussels, Belgium
[9] Chalmers Univ Technol, Dept Math Sci, SE-41296 Gothenburg, Sweden
基金
瑞典研究理事会;
关键词
Automorphic function; small representations; minimal representation; next-to-minimal representation; Fourier coefficient; Whittaker coefficient; Whittaker support; nilpotent orbit; wave-front set; string theory; NILPOTENT ORBITS; REDUCTIVE GROUPS; FORMS;
D O I
10.4153/S0008414X20000711
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we analyze Fourier coefficients of automorphic forms on a finite coverGof an adelic split simply-laced group. Let p be a minimal or next-to-minimal automorphic representation of G. We prove that any eta epsilon pi is completely determined by its Whittaker coefficients with respect to (possibly degenerate) characters of the unipotent radical of a fixed Borel subgroup, analogously to the Piatetski-Shapiro-Shalika formula for cusp forms on GL(n). We also derive explicit formulas expressing the form, as well as all its maximal parabolic Fourier coefficient, in terms of these Whittaker coefficients. Aconsequenceofour results is thenonexistence of cusp forms intheminimal and next-to-minimal automorphic spectrum. We provide detailed examples for G of type D-5 and E-8 with a view toward applications to scattering amplitudes in string theory.
引用
收藏
页码:122 / 169
页数:48
相关论文
共 50 条
  • [1] Minimal affinizations of representations of quantum groups: The simply laced case
    Chari, V
    Pressley, A
    JOURNAL OF ALGEBRA, 1996, 184 (01) : 1 - 30
  • [2] Positive Representations of Split Real Simply-Laced Quantum Groups
    Ip, Ivan C. H.
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2020, 56 (03) : 603 - 646
  • [3] Curtis-Tits groups of simply-laced type
    Blok, Rieuwert J.
    Hoffman, Corneliu G.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2017, 146 : 1 - 32
  • [4] On the automorphic theta representation for simply laced groups
    David Ginzburg
    Stephen Rallis
    David Soudry
    Israel Journal of Mathematics, 1997, 100 : 61 - 116
  • [5] On the automorphic theta representation for simply laced groups
    Ginzburg, D
    Rallis, S
    Soudry, D
    ISRAEL JOURNAL OF MATHEMATICS, 1997, 100 (1) : 61 - 116
  • [6] Next-to-minimal SOFTSUSY
    Allanach, B. C.
    Athron, P.
    Tunstall, Lewis C.
    Voigt, A.
    Williams, A. G.
    COMPUTER PHYSICS COMMUNICATIONS, 2014, 185 (09) : 2322 - 2339
  • [7] Level-two structure of simply-laced Coxeter groups
    Reeder, M
    JOURNAL OF ALGEBRA, 2005, 285 (01) : 29 - 57
  • [8] A Characterization of the Simply-Laced FC-Finite Coxeter Groups
    Manabu Hagiwara
    Masao Ishikawa
    Hiroyuki Tagawa
    Annals of Combinatorics, 2004, 8 (2) : 177 - 196
  • [10] Rank and matrix coefficients for simply laced groups
    Loke, Hung Yean
    Savin, Gordan
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2006, 599 : 201 - 216