Heat flow of harmonic maps whose gradients belong to LxnLt∞

被引:0
|
作者
Wang, Changyou [1 ]
机构
[1] Univ Kentucky, Dept Math, Lexington, KY 40506 USA
关键词
D O I
10.1007/s00205-007-0102-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For any compact n-dimensional Riemannian manifold (M, g) without boundary, a compact Riemannian manifold N subset of R-k without boundary, and 0 < T <= + infinity, we prove that for n >= 4, if u : M x (0, T] -> N is a weak solution to the heat flow of harmonicmaps such that del u is an element of (LxLt infinity)-L-n (M x (0, T]), then u is an element of C-infinity (M x (0, T], N). As a consequence, we show that for n >= 3, if 0 < T < + infinity is the maximal time interval for the unique smooth solution u is an element of C-infinity (M x [0, T), N) of (1.1), then parallel to del u(t)parallel to(n)(L)((M)) blows up as t up arrow T.
引用
收藏
页码:351 / 369
页数:19
相关论文
共 50 条
  • [1] A Note on the Heat Flow of Harmonic Maps Whose Gradients Belong to LtqLxP
    Dai, Junfei
    Luo, Wei
    Wang, Meng
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2015, 11 (02) : 283 - 292
  • [2] On the Heat Flow for Harmonic Maps with Potential
    Ali Fardoun
    Andrea Ratto
    Rachid Regbaoui
    Annals of Global Analysis and Geometry, 2000, 18 : 555 - 567
  • [3] On Uniqueness of Heat Flow of Harmonic Maps
    Huang, Tao
    Wang, Changyou
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2016, 65 (05) : 1525 - 1546
  • [4] On the heat flow for harmonic maps with potential
    Fardoun, A
    Ratto, A
    Regbaoui, R
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (06): : 569 - 574
  • [5] On the heat flow for harmonic maps with potential
    Fardoun, A
    Ratto, A
    Regbaoui, R
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2000, 18 (06) : 555 - 567
  • [6] Nonuniqueness for the heat flow of harmonic maps on the disk
    Bertsch, M
    Dal Passo, R
    Van der Hout, R
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 161 (02) : 93 - 112
  • [7] A New Conformal Heat Flow of Harmonic Maps
    Park, Woongbae
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (12)
  • [8] A New Conformal Heat Flow of Harmonic Maps
    Woongbae Park
    The Journal of Geometric Analysis, 2023, 33
  • [9] The heat flow and harmonic maps on a class of manifolds
    Zhang, X
    PACIFIC JOURNAL OF MATHEMATICS, 1998, 182 (01) : 157 - 182
  • [10] Nonuniqueness for the Heat Flow¶of Harmonic Maps on the Disk
    Michiel Bertsch Dal Passo
    Roberta van der Hout
    Rein undefined
    Archive for Rational Mechanics and Analysis, 2002, 161 : 93 - 112