TRANSONIC SHOCK SOLUTIONS TO THE EULER-POISSON SYSTEM IN QUASI-ONE-DIMENSIONAL NOZZLES

被引:6
|
作者
Duan, Ben [1 ,2 ]
Luo, Zhen [3 ]
Xiao, Jingjing [4 ]
机构
[1] Dalian Univ Technol, Dept Math, Dalian 116024, Peoples R China
[2] Univ Mannheim, Sch Business Informat & Math, D-68131 Mannheim, Germany
[3] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[4] Chinese Univ Hong Kong, Inst Math Sci, Shatin, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Euler-Poisson system; transonic shock; dynamic stability; HYDRODYNAMIC MODEL; ASYMPTOTIC-BEHAVIOR; BOUNDED DOMAINS; POTENTIAL FLOW; GAS-FLOW; SEMICONDUCTORS; EQUATIONS; STABILITY;
D O I
10.4310/CMS.2016.v14.n4.a8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the transonic shock solutions to the Euler-Poisson system in quasi-one-dimensional nozzles. For a given supersonic flow at the entrance of the nozzle, under some proper assumptions on the data and nozzle length we first obtain a class of steady transonic shock solutions for the exit pressure lying in a suitable range. The shock position is monotonically determined by the exit pressure. More importantly, by the estimates on the coupled effects of the electric field and the geometry of the nozzle, we prove the dynamic stability of the transonic shock solutions under suitable physical conditions. As a consequence, there indeed exist dynamically stable transonic shock solutions for the Euler-Poisson system in convergent nozzles, which is not true for the Euler system.
引用
收藏
页码:1023 / 1047
页数:25
相关论文
共 50 条
  • [1] RADIAL TRANSONIC SHOCK SOLUTIONS OF EULER-POISSON SYSTEM IN CONVERGENT NOZZLES
    Bae, Myoungjean
    Park, Yong
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2018, 11 (05): : 773 - 791
  • [2] Transonic shock solutions of the steady Euler flow in quasi-one-dimensional convergent nozzles 
    Liao, Jing
    Tan, Zhong
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 372 : 657 - 671
  • [3] TRANSONIC SHOCK SOLUTIONS FOR A SYSTEM OF EULER-POISSON EQUATIONS
    Luo, Tao
    Xin, Zhouping
    [J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2012, 10 (02) : 419 - 462
  • [4] Stability of Transonic Shock Solutions for One-Dimensional Euler-Poisson Equations
    Luo, Tao
    Rauch, Jeffrey
    Xie, Chunjing
    Xin, Zhouping
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 202 (03) : 787 - 827
  • [5] Global stability of steady transonic Euler shocks in quasi-one-dimensional nozzles
    Rauch, Jeffrey
    Xie, Chunjing
    Xin, Zhouping
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2013, 99 (04): : 395 - 408
  • [6] SUBSONIC SOLUTIONS FOR STEADY EULER-POISSON SYSTEM IN TWO-DIMENSIONAL NOZZLES
    Bae, Myoungjean
    Duan, Ben
    Xie, Chunjing
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (05) : 3455 - 3480
  • [7] Radial Transonic Shock Solutions to Euler-Poisson System with Varying Background Charge in an Annulus
    Duan, Ben
    Luo, Zhen
    Xing, Yuanyuan
    [J]. CSIAM TRANSACTIONS ON APPLIED MATHEMATICS, 2023, 4 (01): : 129 - 156
  • [8] Stability of Transonic Shock Solutions for One-Dimensional Euler–Poisson Equations
    Tao Luo
    Jeffrey Rauch
    Chunjing Xie
    Zhouping Xin
    [J]. Archive for Rational Mechanics and Analysis, 2011, 202 : 787 - 827
  • [9] NON-UNIQUENESS OF TRANSONIC SHOCK SOLUTIONS TO EULER-POISSON SYSTEM WITH VARYING BACKGROUND CHARGES
    Duan, Ben
    Xing, Yuanyuan
    Zheng, Haoran
    [J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2024, 22 (03) : 777 - 788
  • [10] NON-UNIQUENESS OF TRANSONIC SHOCK SOLUTIONS TO NON-ISENTROPIC EULER-POISSON SYSTEM
    Duan, Ben
    Zhang, Na
    [J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2021, 19 (04) : 903 - 917