Numerics of the lattice Boltzmann method: Effects of collision models on the lattice Boltzmann simulations

被引:316
|
作者
Luo, Li-Shi [1 ,2 ]
Liao, Wei [1 ,2 ]
Chen, Xingwang [1 ,2 ]
Peng, Yan [1 ,2 ]
Zhang, Wei [3 ]
机构
[1] Old Dominion Univ, Dept Math & Stat, Norfolk, VA 23529 USA
[2] Old Dominion Univ, Ctr Computat Sci, Norfolk, VA 23529 USA
[3] Xi An Jiao Tong Univ, Dept Fluid Machinery & Engn, Sch Energy & Power Engn, Xian 710049, Shaanxi Prov, Peoples R China
来源
PHYSICAL REVIEW E | 2011年 / 83卷 / 05期
基金
美国国家科学基金会;
关键词
ANALYTIC SOLUTIONS; MICROCHANNEL FLOW; H-THEOREM; EQUATIONS; DISPERSION;
D O I
10.1103/PhysRevE.83.056710
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We conduct a comparative study to evaluate several lattice Boltzmann (LB) models for solving the near incompressible Navier-Stokes equations, including the lattice Boltzmann equation with the multiple-relaxation-time (MRT), the two-relaxation-time (TRT), the single-relaxation-time (SRT) collision models, and the entropic lattice Boltzmann equation (ELBE). The lid-driven square cavity flow in two dimensions is used as a benchmark test. Our results demonstrate that the ELBE does not improve the numerical stability of the SRT or the lattice Bhatnagar-Gross-Krook (LBGK) model. Our results also show that the MRT and TRT LB models are superior to the ELBE and LBGK models in terms of accuracy, stability, and computational efficiency and that the ELBE scheme is the most inferior among the LB models tested in this study, thus is unfit for carrying out numerical simulations in practice. Our study suggests that, to optimize the accuracy, stability, and efficiency in the MRT model, it requires at least three independently adjustable relaxation rates: one for the shear viscosity nu (or the Reynolds number Re), one for the bulk viscosity zeta, and one to satisfy the criterion imposed by the Dirichlet boundary conditions which are realized by the bounce-back-type boundary conditions.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Comment on "Numerics of the lattice Boltzmann method: Effects of collision models on the lattice Boltzmann simulations"
    Karlin, I. V.
    Succi, S.
    Chikatamarla, S. S.
    [J]. PHYSICAL REVIEW E, 2011, 84 (06):
  • [2] Reply to "Comment on 'Numerics of the lattice Boltzmann method: Effects of collision models on the lattice Boltzmann simulations'"
    Luo, Li-Shi
    [J]. PHYSICAL REVIEW E, 2012, 86 (04):
  • [3] Theory of the lattice Boltzmann method: Lattice Boltzmann models for nonideal gases
    Luo, LS
    [J]. PHYSICAL REVIEW E, 2000, 62 (04): : 4982 - 4996
  • [4] Binary droplet collision simulations by a multiphase cascaded lattice Boltzmann method
    Lycett-Brown, Daniel
    Luo, Kai H.
    Liu, Ronghou
    Lv, Pengmei
    [J]. PHYSICS OF FLUIDS, 2014, 26 (02)
  • [5] Multipseudopotential interaction models for thermal lattice Boltzmann method simulations
    Pasieczynski, Kamil
    Chen, Baixin
    [J]. PHYSICAL REVIEW E, 2020, 102 (01)
  • [6] The lattice Boltzmann equation method: theoretical interpretation, numerics and implications
    Nourgaliev, RR
    Dinh, TN
    Theofanous, TG
    Joseph, D
    [J]. INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2003, 29 (01) : 117 - 169
  • [7] From the Boltzmann to the lattice-Boltzmann equation: Beyond BGK collision models
    Philippi, Paulo Cesar
    Hegele, Luiz Adolfo, Jr.
    Surmas, Rodrigo
    Siebert, Diogo Nardelli
    Dos Santos, Luis Orlando Emerich
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2007, 18 (04): : 556 - 565
  • [8] Scalable Flow Simulations with the Lattice Boltzmann Method
    Holzer, Markus
    Staffelbach, Gabriel
    Rocchi, Ilan
    Badwaik, Jayesh
    Herten, Andreas
    Vavrik, Radim
    Vysocky, Ondrej
    Riha, Lubomir
    Cuidard, Romain
    Ruede, Ulrich
    [J]. PROCEEDINGS OF THE 20TH ACM INTERNATIONAL CONFERENCE ON COMPUTING FRONTIERS 2023, CF 2023, 2023, : 297 - 303
  • [9] Simulations of the dynamo effect with the lattice Boltzmann method
    Sarkar, A.
    Tilgner, A.
    [J]. COMPUTERS & FLUIDS, 2006, 35 (8-9) : 925 - 928
  • [10] Bubble flow simulations with the lattice Boltzmann method
    Sankaranarayanan, K
    Shan, X
    Kevrekidis, IG
    Sundaresan, S
    [J]. CHEMICAL ENGINEERING SCIENCE, 1999, 54 (21) : 4817 - 4823