Solving second-order ordinary differential equations by extending the Prelle-Singer method

被引:66
|
作者
Duarte, LGS [1 ]
Duarte, SES [1 ]
da Mota, LACP [1 ]
Skea, JEF [1 ]
机构
[1] Univ Estado Rio De Janeiro, Inst Fis, Dept Fis Teor, Computat Phys Grp, BR-20559900 Rio De Janeiro, Brazil
来源
关键词
D O I
10.1088/0305-4470/34/14/308
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a method for solving second-order ordinary differential equations (ODEs) which is based on the ideas behind the Prelle-Singer (PS) procedure for first-order ODEs. While the PS procedure treats differential equations (DEs) of the form y' = P(x, y)/Q(x, y), with P and Q polynomials whose coefficients lie in the field of complex numbers C, our method is applicable to DEs of the form y" = P(x, y, y')/Q(x, y, y'). The key to our approach is to focus not on the final solution but on the first-order invariants of the equation. Our method is an attempt to address algorithmically the solution of second-order ODEs with solutions in terms of elementary functions.
引用
收藏
页码:3015 / 3024
页数:10
相关论文
共 50 条