Universal manifold pairings and positivity

被引:12
|
作者
Freedman, MH
Kitaev, A
Nayak, C
Slingerland, JK
Walker, K
Wang, ZH
机构
[1] Microsoft Corp, Res, Redmond, WA 98052 USA
[2] CALTECH, Pasadena, CA 91125 USA
[3] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
[4] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
关键词
manifold pairing; unitary; positivity; TQFT; s-cobordism;
D O I
10.2140/gt.2005.9.2305
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Gluing two manifolds M-1 and M-2 with a common boundary S yields a closed manifold M. Extending to formal linear combinations x = Sigma a(i) M-i yields a sesquilinear pairing p = [, ] with values in (formal linear combinations of) closed manifolds. Topological quantum field theory ( TQFT) represents this universal pairing p onto a finite dimensional quotient pairing q with values in C which in physically motivated cases is positive definite. To see if such a "unitary" TQFT can potentially detect any nontrivial x, we ask if [x, x] not equal 0 whenever x not equal 0. If this is the case, we call the pairing p positive. The question arises for each dimension d = 0, 1, 2,.... We find p( d) positive for d = 0, 1, and 2 and not positive for d = 4. We conjecture that p( 3) is also positive. Similar questions may be phrased for ( manifold, submanifold) pairs and manifolds with other additional structure. The results in dimension 4 imply that unitary TQFTs cannot distinguish homotopy equivalent simply connected 4 - manifolds, nor can they distinguish smoothly s - cobordant 4 - manifolds. This may illuminate the difficulties that have been met by several authors in their attempts to formulate unitary TQFTs for d = 3 +1. There is a further physical implication of this paper. Whereas 3 - dimensional Chern - Simons theory appears to be well-encoded within 2 - dimensional quantum physics, e. g. in the fractional quantum Hall effect, Donaldson - Seiberg - Witten theory cannot be captured by a 3 - dimensional quantum system. The positivity of the physical Hilbert spaces means they cannot see null vectors of the universal pairing; such vectors must map to zero.
引用
收藏
页码:2305 / 2319
页数:15
相关论文
共 50 条
  • [1] CONDITIONS OF POSITIVITY ON A COMPLEX SYMPLECTIC MANIFOLD
    SCHAPIRA, P
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1979, 289 (16): : 783 - 785
  • [2] Positivity theorem for a stochastic delay equation on a manifold
    Léandre, R
    ACTA APPLICANDAE MATHEMATICAE, 2003, 78 (1-3) : 273 - 284
  • [3] Positivity Theorem for a Stochastic Delay Equation on a Manifold
    Rémi Léandre
    Acta Applicandae Mathematica, 2003, 78 : 273 - 284
  • [4] Universal presentations for manifold groups
    Barbieri, Elena
    Cavicchioli, Alberto
    Spaggiari, Fulvia
    EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (05) : 1309 - 1320
  • [5] A UNIVERSAL CONSTRUCTION OF UNIVERSAL DEFORMATION FORMULAS, DRINFELD TWISTS AND THEIR POSITIVITY
    Esposito, Chiara
    Schnitzer, Jonas
    Waldmann, Stefan
    PACIFIC JOURNAL OF MATHEMATICS, 2017, 291 (02) : 319 - 358
  • [6] POSITIVITY OF THE UNIVERSAL PAIRING IN 3 DIMENSIONS
    Calegari, Danny
    Freedman, Michael H.
    Walker, Kevin
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 23 (01) : 107 - 188
  • [7] THE UNIVERSAL ABELIAN COVER OF A GRAPH MANIFOLD
    Pedersen, Helge Moller
    JOURNAL OF SINGULARITIES, 2013, 7 : 205 - 219
  • [8] The universal and automatic association between brightness and positivity
    Specker, Eva
    Leder, Helmut
    Rosenberg, Raphael
    Hegelmaier, Lisa Mira
    Brinkmann, Hanna
    Mikuni, Jan
    Kawabata, Hideaki
    ACTA PSYCHOLOGICA, 2018, 186 : 47 - 53
  • [9] Human language reveals a universal positivity bias
    Dodds, Peter Sheridan
    Clark, Eric M.
    Desu, Suma
    Frank, Morgan R.
    Reagan, Andrew J.
    Williams, Jake Ryland
    Mitchell, Lewis
    Harris, Kameron Decker
    Kloumann, Isabel M.
    Bagrow, James P.
    Megerdoomian, Karine
    McMahon, Matthew T.
    Tivnan, Brian F.
    Danforth, Christopher M.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (08) : 2389 - 2394
  • [10] Calderon: Manifold perfection from a universal playwright
    Arellano, I
    INSULA-REVISTA DE LETRAS Y CIENCIAS HUMANAS, 2000, 55 (644-45): : 4 - 6