共 50 条
Mechanism study on flotation separation of molybdenite from chalcocite using thioglycollic acid as depressant
被引:29
|作者:
Qin Wenqing
[1
]
Wu Jiajia
[1
]
Jiao Fen
[1
]
Zeng Jinming
[1
]
机构:
[1] Cent S Univ, Sch Minerals Proc & Bioengn, Changsha 410083, Hunan, Peoples R China
基金:
中国国家自然科学基金;
关键词:
Chalcocite;
Molybdenite;
Thioglycollic acid;
Flotation;
First-principles study;
ADSORPTION;
GALENA;
TECHNOLOGY;
RECOVERY;
MINERALS;
SULFIDE;
ORE;
D O I:
10.1016/j.ijmst.2017.06.011
中图分类号:
TD [矿业工程];
学科分类号:
0819 ;
摘要:
Effects of collectors (butyl xanthate (BX), O-isopropyl-N-sulfur ethyl carbamate (Z-200) and emulsified kerosene), dereagent (sodium sulfide) and depressant thioglycollic acid (TGA) on the flotation of chalcocite and molybdenite were investigated through flotation. The first principle theory was adopted to understand the difference of their surfaces and reaction between minerals and reagents. Results of flotation tests revealed that selectivity of emulsified kerosene is the best of three collectors in separation of chalcocite and molybdenite, though the others also display excellent collecting properties. Sodium sulfide can effectively remove collectors adsorbed on chalcocite surface, and TGA is an effective depressant of chalcocite at pH 8-9. Through first principle study, molybdenite displays relatively stronger covalence property while bonding interaction between copper atoms in chalcocite enhanced its ionicity. Bonding interaction is weaker in reaction of TGA and molybdenite, so it shows higher hydrophobicity and better flotability. Therefore, TGA is an effective inhibitor in the separation. (C) 2017 Published by Elsevier B.V. on behalf of China University of Mining & Technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:1043 / 1049
页数:7
相关论文