Parallelization in time through tensor-product space-time solvers

被引:47
|
作者
Maday, Yvon [1 ,2 ]
Ronquist, Einar M. [3 ]
机构
[1] Univ Paris 06, UMR 7598, Lab JL Lions, F-75252 Paris 05, France
[2] Brown Univ, Div Appl Math, Providence, RI 02912 USA
[3] Norwegian Univ Sci & Technol, Dept Math Sci, N-7491 Trondheim, Norway
关键词
D O I
10.1016/j.crma.2007.09.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this Note, we extend the fast tensor-product algorithm for the simulation of time-dependent partial differential equations. We use the natural tensorization of the space-time domain to propose, after discretization, a set of independent problems, each one with the complexity of a single steady problem. This allows for an efficient parallel implementation that is already interesting on small architectures, but that can also be combined with standard domain-decomposition-based algorithms providing a further direction of parallelism on large computer platforms. Preliminary numerical simulations are presented for a one-dimensional unsteady heat equation.
引用
收藏
页码:113 / 118
页数:6
相关论文
共 50 条
  • [1] Tensor-Product Preconditioners for a Space-Time Discontinuous Galerkin Method
    Diosady, Laslo T.
    Murman, Scott M.
    [J]. INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2014 (ICCMSE 2014), 2014, 1618 : 946 - 949
  • [2] Tensor-product preconditioners for higher-order space-time discontinuous Galerkin methods
    Diosady, Laslo T.
    Murman, Scott M.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 330 : 296 - 318
  • [3] REMOTE SPACE-TIME PARALLELIZATION BY GRAVITATIONAL FIELDS
    TREDER, HJ
    [J]. MATHEMATISCHE NACHRICHTEN, 1969, 42 (4-6) : 295 - &
  • [4] SPACE-TIME REPRESENTATION IN THE BRAIN - THE CEREBELLUM AS A PREDICTIVE SPACE-TIME METRIC TENSOR
    PELLIONISZ, A
    LLINAS, R
    [J]. NEUROSCIENCE, 1982, 7 (12) : 2949 - &
  • [5] ELECTROMAGNETIC TENSOR IN RIEMANNIAN SPACE-TIME
    GOODINSON, PA
    [J]. ANALES DE FISICA, 1969, 65 (11-1): : 351 - +
  • [6] Space-Time Parallelization is Feasible for Highly Nonlinear Simulations
    Aubanel, Eric
    [J]. 2018 IEEE INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS (IPDPSW 2018), 2018, : 945 - 945
  • [7] An outer product synthesis approach to tensor beamformer for space-time adaptive processing
    Bi, Quanyang
    Li, Dan
    Zhang, Jianqiu
    [J]. Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2019, 40 (10):
  • [8] Fast Tensor-Product Solvers: Partially Deformed Three-dimensional Domains
    Tormod Bjøntegaard
    Yvon Maday
    Einar M. Rønquist
    [J]. Journal of Scientific Computing, 2009, 39 : 28 - 48
  • [9] Fast Tensor-Product Solvers: Partially Deformed Three-dimensional Domains
    Bjontegaard, Tormod
    Maday, Yvon
    Ronquist, Einar M.
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2009, 39 (01) : 28 - 48
  • [10] QUANTUM STRESS TENSOR IN SCHWARZSCHILD SPACE-TIME
    HOWARD, KW
    CANDELAS, P
    [J]. PHYSICAL REVIEW LETTERS, 1984, 53 (05) : 403 - 406