Fusing Image Representations for Classification Using Support Vector Machines

被引:1
|
作者
Demirkesen, Can [1 ]
Cherifi, Hocine [2 ]
机构
[1] Univ Grenoble 1, Lab Jean Kuntzmann, BP 53, F-38041 Grenoble, France
[2] Galatasaray Univ, Inst Sci & Engn, Istanbul, Turkey
关键词
image categorization; feature level fusion; classifier fusion;
D O I
10.1109/IVCNZ.2009.5378367
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In order to improve classification accuracy different image representations are usually combined. This can be done by using two different fusing schemes. In feature level fusion schemes, image representations are combined before the classification process. In classifier fusion, the decisions taken separately based on individual representations are fused to make a decision. In this paper the main methods derived for both strategies are evaluated. Our experimental results show that classifier fusion performs better. Specifically Bayes belief integration is the best performing strategy for image classification task.
引用
收藏
页码:437 / +
页数:2
相关论文
共 50 条
  • [1] Color Image Classification Using Support Vector Machines
    冯霞
    [J]. 中国民航大学学报, 2003, (S2) : 184 - 190
  • [2] Image classification by support vector machines
    Zhang, YN
    Zhao, RC
    Leung, Y
    [J]. PROCEEDINGS OF 2001 INTERNATIONAL SYMPOSIUM ON INTELLIGENT MULTIMEDIA, VIDEO AND SPEECH PROCESSING, 2001, : 360 - 363
  • [3] Polarimetric SAR image classification using support vector machines
    Fukuda, S
    Hirosawa, H
    [J]. IEICE TRANSACTIONS ON ELECTRONICS, 2001, E84C (12) : 1939 - 1945
  • [4] Image tamper detection and classification using support vector machines
    Knowles, HD
    Winne, DA
    Canagarajah, CN
    Bull, DR
    [J]. IEE PROCEEDINGS-VISION IMAGE AND SIGNAL PROCESSING, 2004, 151 (04): : 322 - 328
  • [5] Infrared-image classification using support vector machines
    Chang, SR
    Nasrabadi, N
    Carin, L
    [J]. 2002 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-IV, PROCEEDINGS, 2002, : 4168 - 4168
  • [6] Range image based classification system using support vector machines
    Ghobadi, Seyed Eghbal
    Hartmann, Klaus
    Loffeld, Otmar
    Weihs, Wolfgang
    [J]. COMPUTATIONAL INTELLIGENCE AND SECURITY, 2007, 4456 : 277 - 287
  • [7] Fusing images with different focuses using support vector machines
    Li, ST
    Kwok, JTY
    Tsang, IWH
    Wang, YN
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2004, 15 (06): : 1555 - 1561
  • [8] Fusing images with multiple focuses using support vector machines
    Li, ST
    Kwok, JT
    Wang, YN
    [J]. ARTIFICIAL NEURAL NETWORKS - ICANN 2002, 2002, 2415 : 1287 - 1292
  • [9] Semisupervised image classification with Laplacian support vector machines
    Gomez-Chova, Luis
    Camps-Valls, Gustavo
    Munoz-Mari, Jordi
    Calpe, Javier
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2008, 5 (03) : 336 - 340
  • [10] Hyperspectral Image Classification Using Discrete Space Model and Support Vector Machines
    Xie, Li
    Li, Guangyao
    Xiao, Mang
    Peng, Lei
    Chen, Qiaochuan
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (03) : 374 - 378