In-situ FT-IR quantitative analysis of amine concentrations and CO2 loading amount in solvent mixtures for CO2 capture

被引:2
|
作者
Yoon, Yo Sung [1 ]
Lee, Jay H. [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Chem & Biomol Engn, 291 Daehak Ro, Daejeon 34141, South Korea
关键词
Multivariate quantitative analysis; Reduced order neural network; Feature extraction; CO2; capture; Mixture absorbent; In-situ FT-IR; LIQUID-PHASE; SPECIES DISTRIBUTION; NEURAL-NETWORKS; ABSORPTION; SYSTEMS; MODEL; DEGRADATION; TECHNOLOGY; SPECIATION; GAS;
D O I
10.1016/j.ijggc.2019.102920
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
An in-situ FT-IR based quantitative analysis model has been designed to track the internal state of solvent mixtures in a CO2 capture process. This approach is much faster and easier than using GC or NMR, but conventional linear multivariate analysis is not suitable due to the poor resolution of FT-IR. The conventional PLS regression also exhibits bad performance due to its inability to reflect the nonlinear behavior like peak shift, which is a common characteristic of the systems involving reactions. This paper proposes the artificial neural networks (ANNs) as an alternative nonlinear regression method. Two feature extraction methods, PCA and POD, are applied to reduce the redundancy and dimension of the input data as a preprocessing step. The neural network approach displayed higher accuracies in cross-validation and also in in-situ experiments compared to the PLS regression in a performance test involving three models. In particular, the POD-ANN method showed outstanding results with under 5 % relative error. This model can fulfill the function of an online monitoring system for CO2 capture processes and can provide information on water and solvent loss from evaporation or degradation. Furthermore, it can be utilized for control and fault detection techniques to maintain long-term operational stability of the system.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] FT-IR study on CO2 adsorbed species of CO2 sorbents
    Jhulimar M. Celedonio
    Jong Hyun Park
    Young Soo Ko
    Research on Chemical Intermediates, 2016, 42 : 141 - 154
  • [2] FT-IR study on CO2 adsorbed species of CO2 sorbents
    Celedonio, Jhulimar M.
    Park, Jong Hyun
    Ko, Young Soo
    RESEARCH ON CHEMICAL INTERMEDIATES, 2016, 42 (01) : 141 - 154
  • [3] In-Situ FT-IR Spectroscopy Investigation of CH4 and CO2 Reaction
    Liu, Yongjun
    Cui, Nan
    Jia, Penglong
    Huang, Wei
    CATALYSTS, 2020, 10 (01)
  • [4] FT-IR SPECTRA OF CO2 CLUSTERS
    FLEYFEL, F
    DEVLIN, JP
    JOURNAL OF PHYSICAL CHEMISTRY, 1989, 93 (21): : 7292 - 7294
  • [5] Investigation on electrochemical capture of CO2 in p-Benzoquinone solutions by in situ FT-IR spectroelectrochemistry
    Fan, Hui
    Cheng, Longjiu
    Jin, Baokang
    ELECTROCHIMICA ACTA, 2019, 324
  • [6] CO2 absorption mechanism in amine solvents and enhancement of CO2 capture capability in blended amine solvent
    Kim, Sunkyung
    Shi, Hu
    Lee, Jin Yong
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2016, 45 : 181 - 188
  • [7] Amine hybrid aerogel for high-efficiency CO2 capture: Effect of amine loading and CO2 concentration
    Kong, Yong
    Jiang, Guodong
    Wu, Ye
    Cui, Sheng
    Shen, Xiaodong
    CHEMICAL ENGINEERING JOURNAL, 2016, 306 : 362 - 368
  • [8] Investigation of DFMs for CO2 Capture and Methanation by Coupled Microreactor Experiments and FT-IR Spectroscopy
    Porta, Alessandro
    Matarrese, Roberto
    Visconti, Carlo Giorgio
    Lietti, Luca
    ENERGY & FUELS, 2023, 37 (10) : 7280 - 7290
  • [9] Amine mixtures and the effect of additives on the CO2 capture rate
    Rowland, R.
    Yang, Q.
    Jackson, P.
    Attalla, M.
    10TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, 2011, 4 : 195 - 200
  • [10] CO2 EOR WITH IN-SITU CO2 CAPTURE, A NEUQUINA BASIN OXYCOMBUSTION CASE STUDY
    Gonzalo, Gallo
    Raul, Puliti
    Rodolfo, Torres
    Eleonora, Erdmann-E
    CT&F-CIENCIA TECNOLOGIA Y FUTURO, 2020, 10 (02): : 39 - 47