Empirical models to predict rheological properties of fiber reinforced cementitious composites for 3D printing

被引:84
|
作者
Weng, Yiwei [1 ,2 ]
Lu, Bing [2 ]
Li, Mingyang [1 ]
Liu, Zhixin [1 ]
Tan, Ming Jen [1 ]
Qian, Shunzhi [1 ,2 ]
机构
[1] Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore Ctr Printing 3D, Singapore, Singapore
[2] Nanyang Technol Univ, Sch Civil & Environm Engn, Singapore, Singapore
基金
新加坡国家研究基金会;
关键词
Rheological properties; 3D cementitious materials printing; Thixotropy; Statistical design; PERFORMANCE; GEOPOLYMER; CONCRETE; DESIGN; THIXOTROPY; EMISSIONS; STRENGTH;
D O I
10.1016/j.conbuildmat.2018.09.039
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
3D printable construction materials need to be conveyed through a delivery system whilst possess certain flow resistance to ensure materials can sustain the weight of subsequent layers. To meet these requirements, material rheological properties should be optimized. In this study, factorial design was adopted to evaluate the influences of five variables (water-to-binder ratio, sand-to-binder ratio, fly ash-to-cement ratio, silica fume-to-cement ratio, and dosage of fiber) on material theological properties (flow resistance, torque viscosity and thixotropy). Empirical models were established to predict theological properties and were verified by experiment. Results imply that the increment of the dosage of fiber boosts all the rheological parameters, which are declined with the increment of water-to-binder ratio. Torque viscosity raises while flow resistance and thixotropy are decreased with the rise of fly ash-to cement ratio. Conversely, the influence of silica fume-to-cement ratio shows an opposite trend on rheological properties as compared to that of fly ash-to-cement ratio. Flow resistance and torque viscosity are improved whilst thixotropy is declined if sand-to-binder ratio increases. Different formulations were adopted in printing test for verification and demonstration purpose via a robotic arm printing system in the end. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:676 / 685
页数:10
相关论文
共 50 条
  • [1] Effect of Fiber Content and Alignment on the Mechanical Properties of 3D Printing Cementitious Composites
    Zhang, Hao
    Zhu, Liming
    Zhang, Fan
    Yang, Mijia
    MATERIALS, 2021, 14 (09)
  • [2] Effects of rheological properties and printing speed on molding accuracy of 3D printing basalt fiber cementitious materials
    Zhao, Yu
    Yang, Guang
    Zhu, Lingli
    Ding, Yahong
    Guan, Xuemao
    Wu, Xikai
    Yang, Zhang
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2022, 21 : 3462 - 3475
  • [3] 3D PRINTABLE HIGH PERFORMANCE FIBER REINFORCED CEMENTITIOUS COMPOSITES FOR LARGE-SCALE PRINTING
    Weng, Yiwei
    Qian, Shunzhi
    He, Lewei
    Li, Mingyang
    Tan, Ming Jen
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON PROGRESS IN ADDITIVE MANUFACTURING, 2018, : 19 - 24
  • [4] Advances in Research on Flowability and Rheological Properties of Fiber Reinforced Cementitious Composites
    Si W.
    Cao M.
    Feng J.
    Cailiao Daobao/Materials Review, 2019, 33 (03): : 819 - 825
  • [6] A rheological-based printability assessment method for 3D printing Engineered Cementitious Composites considering fiber dispersion
    Pi, Yilin
    Lu, Cong
    Yao, Yiming
    Li, Baoshan
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2024, 20
  • [7] Robotic 3D Printing of Continuous Fiber Reinforced Thermoset Composites
    Abdullah, Arif M.
    Dunn, Martin L.
    Yu, Kai
    ADVANCED MATERIALS TECHNOLOGIES, 2024,
  • [8] 3D printing of continuous fiber-reinforced thermoset composites
    He, Xu
    Ding, Yuchen
    Lei, Zepeng
    Welch, Sam
    Zhang, Wei
    Dunn, Martin
    Yu, Kai
    Additive Manufacturing, 2021, 40
  • [9] 3D printing of continuous fiber-reinforced thermoset composites
    He, Xu
    Ding, Yuchen
    Lei, Zepeng
    Welch, Sam
    Zhang, Wei
    Dunn, Martin
    Yu, Kai
    ADDITIVE MANUFACTURING, 2021, 40
  • [10] Fibre-reinforced lightweight engineered cementitious composites for 3D concrete printing
    Sun, Junbo
    Aslani, Farhad
    Lu, Jenny
    Wang, Lining
    Huang, Yimiao
    Ma, Guowei
    CERAMICS INTERNATIONAL, 2021, 47 (19) : 27107 - 27121