Characterization of Sparse-Array detection Photoacoustic Tomography using the Singular Value Decomposition

被引:1
|
作者
Chaudhary, G. [1 ]
Roumeliotis, M. [3 ,4 ]
Ephrat, P. [3 ,4 ]
Stodilka, R. [3 ,4 ]
Carson, J. J. L. [3 ,4 ]
Anastasio, M. A. [1 ,2 ]
机构
[1] IIT, Med Imaging Res Ctr, Dept Elect & Comp Engn, Chicago, IL 60616 USA
[2] IIT, Med Imaging Res Ctr, Dept Biomed Engn, Chicago, IL 60616 USA
[3] St Josephs Hlth Care, Lawson Hlth Res Inst, Imaging Program, London, ON N6A 4V2, Canada
[4] Univ West Ontario, Dept Med Biophys, London, ON N6A 5C1, Canada
关键词
Photoacoustic tomography; singular value decomposition; LANCZOS algorithm; pseudo-inverse solution;
D O I
10.1117/12.842663
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A photoacoustic tomography (PAT) method that employs a sparse two-dimentional (2D) array of detector elements has recently been employed to reconstruct images of simple objects from highly incomplete measurement data. However, there remains an important need to understand what type of object features can be reliably reconstructed from such a system. In this work, we numerically compute the singular value decomposition (SVD) of different system matrices that are relevant to implementations of sparse-array PAT. For a given number and arrangement of measurement transducers, this will reveal the type of object features that can reliably be reconstructed as well as those that are invisible to the imaging system.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Comparison of reconstruction algorithms for sparse-array detection photoacoustic tomography
    Chaudhary, G.
    Roumeliotis, M.
    Carson, J. J. L.
    Anastasio, M. A.
    [J]. PHOTONS PLUS ULTRASOUND: IMAGING AND SENSING 2010, 2010, 7564
  • [2] Singular value decomposition using an array of CORDIC processors
    Milford, David
    Sandell, Magnus
    [J]. SIGNAL PROCESSING, 2014, 102 : 163 - 170
  • [3] Faster Imputation Using Singular Value Decomposition for Sparse Data
    Phuc Nguyen
    Tran, Linh G. H.
    Le, Bao H.
    Nguyen, Thuong H. T.
    Thu Nguyen
    Nguyen, Hien D.
    Nguyen, Binh T.
    [J]. INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2023, PT I, 2023, 13995 : 135 - 146
  • [4] Weighted Singular Value Thresholding for Sparse Photoacoustic Microscopy
    Wang, Minghua
    Liu, Xuan
    Wang, Qiang
    Sun, Mingjian
    Zhao, Rongqiang
    Wu, Zhaojun
    [J]. 2017 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2017, : 382 - 387
  • [5] The sparse array elements selection in sparse imaging of circular-array photoacoustic tomography
    Qin, Zezheng
    Liu, Yang
    Chi, Junke
    Ma, Yiming
    Sun, Mingjian
    [J]. JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES, 2022, 15 (05)
  • [6] A Novel Sparse Penalty for Singular Value Decomposition
    Wang Caihua
    Liu Juan
    Min Wenwen
    Qu Aiping
    [J]. CHINESE JOURNAL OF ELECTRONICS, 2017, 26 (02) : 306 - 312
  • [7] A Novel Sparse Penalty for Singular Value Decomposition
    WANG Caihua
    LIU Juan
    MIN Wenwen
    QU Aiping
    [J]. Chinese Journal of Electronics, 2017, 26 (02) : 306 - 312
  • [8] An Improved Sparse Reconstruction Algorithm Based on Singular Value Decomposition for Electrical Resistance Tomography
    Li, Shouxiao
    Wang, Huaxiang
    Chen, Joanna N.
    Cui, Ziqiang
    [J]. 2021 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC 2021), 2021,
  • [9] Biclustering via Sparse Singular Value Decomposition
    Lee, Mihee
    Shen, Haipeng
    Huang, Jianhua Z.
    Marron, J. S.
    [J]. BIOMETRICS, 2010, 66 (04) : 1087 - 1095
  • [10] Weak Signal Detection Based on Combination of Sparse Representation and Singular Value Decomposition
    Ma, Huijie
    Li, Shunming
    Li, Xianglian
    Lu, Jiantao
    [J]. APPLIED SCIENCES-BASEL, 2022, 12 (11):