DIRECT IMPORTANCE ESTIMATION WITH PROBABILISTIC PRINCIPAL COMPONENT ANALYZERS

被引:0
|
作者
Yamada, Makoto
Sugiyama, Masashi
Wichern, Gordon
机构
关键词
Importance; KLIEP; Probabilistic PCA; EM algorithm; COVARIATE SHIFT;
D O I
10.1109/ICASSP.2010.5495290
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The importance estimation problem (estimating the ratio of two probability density functions) has recently gathered a great deal of attention for use in various applications, e. g., outlier detection and covariate shift adaptation. In this paper, we propose a new importance estimation method using mixtures of probabilistic principal component analyzers (PPCAs). Our method employs the framework of the Kullback-Leibler importance estimation procedure (KLIEP) using using linear or kernel models. The proposed approach entitled PPCA mixture KLIEP (PM-KLIEP) can improve importance estimation accuracy with correlated and rank-deficient data. Through experiments, we show the validity of the proposed approach.
引用
收藏
页码:1962 / 1965
页数:4
相关论文
共 50 条
  • [1] Direct Importance Estimation with a Mixture of Probabilistic Principal Component Analyzers
    Yamada, Makoto
    Sugiyama, Masashi
    Wichern, Gordon
    Simm, Jaak
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2010, E93D (10) : 2846 - 2849
  • [2] Mixtures of probabilistic principal component analyzers
    Tipping, ME
    Bishop, CM
    [J]. NEURAL COMPUTATION, 1999, 11 (02) : 443 - 482
  • [3] Mixtures of robust probabilistic principal component analyzers
    Archambeau, Cedric
    Delannay, Nicolas
    Verleysen, Michel
    [J]. NEUROCOMPUTING, 2008, 71 (7-9) : 1274 - 1282
  • [4] Mixture of Probabilistic Principal Component Analyzers for Shapes from Point Sets
    Gooya, Ali
    Lekadir, Karim
    Castro-Mateos, Isaac
    Pozo, Jose Maria
    Frangi, Alejandro F.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) : 891 - 904
  • [5] Coordinating Principal Component Analyzers
    Verbeek, JJ
    Vlassis, N
    Kröse, B
    [J]. ARTIFICIAL NEURAL NETWORKS - ICANN 2002, 2002, 2415 : 914 - 919
  • [6] Mixtures of principal component analyzers
    Tipping, ME
    Bishop, CM
    [J]. FIFTH INTERNATIONAL CONFERENCE ON ARTIFICIAL NEURAL NETWORKS, 1997, (440): : 13 - 18
  • [7] Unsupervised Anomaly Detection using Deep Autoencoding Mixture of Probabilistic Principal Component Analyzers
    Tra, Viet
    Al-Bazzaz, Hussein
    Amayri, Manar
    Bouguila, Nizar
    [J]. PROCEEDINGS OF 2023 8TH INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION TECHNOLOGY, ICIIT 2023, 2023, : 203 - 208
  • [8] Continuous estimation of distribution algorithms with probabilistic principal component analysis
    Cho, DY
    Zhang, BT
    [J]. PROCEEDINGS OF THE 2001 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2001, : 521 - 526
  • [9] On the Consistency of Maximum Likelihood Estimation of Probabilistic Principal Component Analysis
    Datta, Arghya
    Chakrabarty, Sayak
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [10] DNN pruning with principal component analysis and connection importance estimation
    Riera, Marc
    Arnau, Jose Maria
    Gonzalez, Antonio
    [J]. JOURNAL OF SYSTEMS ARCHITECTURE, 2022, 122