On Littlewood"s constants

被引:2
|
作者
Beliaev, D [1 ]
Smirnov, S
机构
[1] Royal Inst Technol, Inst Matemat, S-10044 Stockholm, Sweden
[2] Univ Geneva, Sect Math, CH-1211 Geneva, Switzerland
关键词
D O I
10.1112/S0024609305004522
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In two papers, Littlewood studied seemingly unrelated constants: (i) the best alpha such that for any polynomial f, of degree n, the areal integral of its spherical derivative is at most const -n(alpha), and (ii) the extremal growth rate beta of the length of Green's equipotentials for simply connected domains. These two constants are shown to coincide, thus greatly improving known estimates on a.
引用
收藏
页码:719 / 726
页数:8
相关论文
共 50 条
  • [1] Hardy-Littlewood constants
    Conrad, K
    MATHEMATICAL PROPERTIES OF SEQUENCES AND OTHER COMBINATORIAL STRUCTURES, 2003, 726 : 133 - 154
  • [2] On Exact Constants in Hardy–Littlewood Inequalities
    V. P. Motornyi
    Ukrainian Mathematical Journal, 2018, 69 : 1891 - 1901
  • [3] On the Constants of the Bohnenblust–Hille and Hardy–Littlewood Inequalities
    Gustavo Araújo
    Daniel Pellegrino
    Bulletin of the Brazilian Mathematical Society, New Series, 2017, 48 : 141 - 169
  • [4] Optimal constants for a mixed Littlewood type inequality
    Tony Nogueira
    Daniel Núñez-Alarcón
    Daniel Pellegrino
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2017, 111 : 1083 - 1092
  • [5] A REMARK ON THE CONSTANTS OF THE LITTLEWOOD-PALEY INEQUALITY
    PICHORIDES, SK
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 114 (03) : 787 - 789
  • [6] On Exact Constants in Hardy-Littlewood Inequalities
    Motornyi, V. P.
    UKRAINIAN MATHEMATICAL JOURNAL, 2018, 69 (12) : 1891 - 1901
  • [7] Optimal constants for a mixed Littlewood type inequality
    Nogueira, Tony
    Nunez-Alarcon, Daniel
    Pellegrino, Daniel
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2017, 111 (04) : 1083 - 1092
  • [8] OPTIMAL CONSTANTS OF THE MIXED LITTLEWOOD INEQUALITIES: THE COMPLEX CASE
    Cavalcante, Wasthenny
    Nunez-Alarcon, Daniel
    Pellegrino, Daniel
    Rueda, Pilar
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2022, 25 (01): : 205 - 220
  • [9] On the upper bounds for the constants of the Hardy-Littlewood inequality
    Araujo, Gustavo
    Pellegrino, Daniel
    da Silva e Silva, Diogo Diniz P.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (06) : 1878 - 1888
  • [10] A new estimate for the constants of an inequality due to Hardy and Littlewood
    Nunes, Antonio Gomes
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 526 : 27 - 34