COCHARACTERS OF POLYNOMIAL IDENTITIES OF UPPER TRIANGULAR MATRICES

被引:6
|
作者
Boumova, Silvia [1 ]
Drensky, Vesselin [1 ]
机构
[1] Bulgarian Acad Sci, Inst Math & Informat, BU-1113 Sofia, Bulgaria
关键词
Algebras with polynomial identity; upper triangular matrices; cocharacter sequence; multiplicities; Hilbert series; MACMAHONS PARTITION ANALYSIS; RELATIVELY FREE ALGEBRAS; P; I; ALGEBRAS; T-IDEALS; SCHUR-FUNCTIONS; HILBERT SERIES; CODIMENSIONS; MULTIPLICITIES; INVARIANTS; VARIETIES;
D O I
10.1142/S0219498811005440
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let T(U-k) be the T-ideal of the polynomial identities of the algebra of k x k upper triangular matrices over a field of characteristic zero. We give an easy algorithm which calculates the generating function of the cocharacter sequence chi(n)(U-k) = Sigma(lambda proves n) m(lambda) (U-k)chi(lambda) of the T-ideal T(U-k). Applying this algorithm we have found the explicit form of the multiplicities m(lambda)(U-k) in two cases: (i) for the "largest" partitions lambda = (lambda(1), . . . , lambda(n)) which satisfy lambda(k+1) + . . . + lambda(n) = k - 1; (ii) for the first several k and any lambda.
引用
收藏
页数:24
相关论文
共 50 条