On the Gerber-Shiu function with random discount rate

被引:4
|
作者
Wang, Houchun [1 ]
Ling, Nengxiang [2 ]
机构
[1] Anhui Jianzhu Univ, Sch Math & Phys, Hefei 230601, Peoples R China
[2] Hefei Univ Technol, Sch Math, Hefei, Peoples R China
关键词
Asymptotic formula; Gerber-Shiu function; Random discount rate; Renewal equation; POISSON RISK MODEL; DEFECTIVE RENEWAL EQUATION; DIVIDEND BARRIER; PENALTY-FUNCTION; RUIN; TIME; DIFFUSION; SURPLUS;
D O I
10.1080/03610926.2014.988265
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we study the Gerber-Shiu (G-S) function for the classical risk model, in which the discount rate is generalized from a constant to a random variable. The discounted interest force accumulated process is modeled by a Poisson process and a Gaussian process for the G-S function. In terms of the standard techniques in ruin theory, we derive the integro-differential equation and the defective renewal equation satisfied by the G-S function. Then, the asymptotic formula for the G-S function is obtained using the renewal theory.
引用
收藏
页码:210 / 220
页数:11
相关论文
共 50 条
  • [1] On the Gerber-Shiu function and change of measure
    Schmidli, Hanspeter
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2010, 46 (01): : 3 - 11
  • [2] Gerber-Shiu analysis with a generalized penalty function
    Cheung, Eric C. K.
    Landriault, David
    Willmot, Gordon E.
    Woo, Jae-Kyung
    [J]. SCANDINAVIAN ACTUARIAL JOURNAL, 2010, (03) : 185 - 199
  • [3] Computing the Gerber-Shiu function by frame duality projection
    Wang, Wenyuan
    Zhang, Zhimin
    [J]. SCANDINAVIAN ACTUARIAL JOURNAL, 2019, (04) : 291 - 307
  • [4] The Gerber-Shiu discounted penalty function in the delayed renewal risk process with random income
    Bao, Zhen-hua
    Ye, Zhong-xing
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2007, 184 (02) : 857 - 863
  • [5] On the generalized Gerber-Shiu function for surplus processes with interest
    Li, Shuanming
    Lu, Yi
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2013, 52 (02): : 127 - 134
  • [6] Gerber-Shiu function for the discrete inhomogeneous claim case
    Bieliauskiene, Eugenija
    Siaulys, Jonas
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2012, 89 (12) : 1617 - 1630
  • [7] On the Gerber-Shiu discounted penalty function for subexponential claims
    Šiaulys J.
    Asanavičiute R.
    [J]. Lithuanian Mathematical Journal, 2006, 46 (4) : 487 - 493
  • [8] The Gerber-Shiu Penalty Function about Dual Binomial Model
    Yu Na
    Wang Hanxing
    [J]. ADVANCES IN MANAGEMENT OF TECHNOLOGY, PT 1, 2009, : 572 - +
  • [9] On a generalization of the Gerber-Shiu function to path-dependent penalties
    Biffis, Enrico
    Morales, Manuel
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2010, 46 (01): : 92 - 97
  • [10] The Gerber-Shiu function and the generalized Cramer-Lundberg model
    Labbe, Chantal
    Sendov, Hristo S.
    Sendova, Kristina P.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (07) : 3035 - 3056