Isolation of Cycles

被引:29
|
作者
Borg, Peter [1 ]
机构
[1] Univ Malta, Fac Sci, Dept Math, Msida, Malta
关键词
Cycle; Isolating set; Graph domination; DOMINATION; GRAPHS;
D O I
10.1007/s00373-020-02143-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any graph G, let iota c(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\iota _{\mathrm{c}}(G)$$\end{document} denote the size of a smallest set D of vertices of G such that the graph obtained from G by deleting the closed neighbourhood of D contains no cycle. We prove that if G is a connected n-vertex graph that is not a triangle, then iota c(G)<= n/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\iota _{\mathrm{c}}(G) \le n/4$$\end{document}. We also show that the bound is sharp. Consequently, this settles a problem of Caro and Hansberg.
引用
收藏
页码:631 / 637
页数:7
相关论文
共 50 条