Recursions and asymptotics of intersection numbers

被引:2
|
作者
Liu, Kefeng [1 ,2 ]
Mulase, Motohico [3 ]
Xu, Hao [4 ,5 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Beijing, Peoples R China
[2] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90024 USA
[3] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
[4] Zhejiang Univ, Ctr Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
[5] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
Moduli space of curves; intersection numbers; asymptotic expansion; WEIL-PETERSSON VOLUMES; MODULI SPACES; TOPOLOGICAL RECURSION; CURVES; INVARIANTS; PROOF;
D O I
10.1142/S0129167X16500725
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish the asymptotic expansion of certain integrals of psi classes on moduli spaces of curves (M) over bar (g, n), when either the g or n goes to infinity. Our main tools are cut-join type recursion formulae from the Witten-Kontsevich theorem, as well as asymptotics of solutions to the first Painleve equation. We also raise a conjecture on large genus asymptotics for n-point functions of psi classes and partially verify the positivity of coefficients in generalized Mirzakhani's formula of higher Weil-Petersson volumes.
引用
收藏
页数:31
相关论文
共 50 条