AUGMECON-Py: A Python']Python framework for multi-objective linear optimisation under uncertainty

被引:0
|
作者
Forouli, Aikaterini [1 ]
Pagonis, Anastasios [1 ]
Nikas, Alexandros [2 ]
Koasidis, Konstantinos [1 ]
Xexakis, Georgios [3 ]
Koutsellis, Themistoklis [2 ]
Petkidis, Christos [3 ]
Doukas, Haris
机构
[1] Natl Tech Univ Athens, Sch Elect & Comp Engn, Iroon Politechniou 7, Athens 15780, Greece
[2] Natl Tech Univ Athens, Energy Policy Unit, Iroon Politech 7, Athens 15780, Greece
[3] HOLIST PC, Mesoge Ave 507, Athens 15343, Greece
基金
欧盟地平线“2020”;
关键词
Multi-objective linear programming; Uncertainty analysis; !text type='Python']Python[!/text; -constraint; SUSTAINABLE SUPPLY CHAIN; EPSILON-CONSTRAINT METHOD; PROGRAMMING-MODEL; ENERGY-STORAGE; CLIMATE-CHANGE; MANAGEMENT; BIOENERGY; SELECTION; DESIGN; SYSTEMS;
D O I
10.1016/j.softx.2022.101220
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper presents AUGMECON-Py, a Python framework for solving large and complex multi-objective linear programming problems under uncertainty, optimally and robustly capturing all solutions. On the core of the AUGMECON-Py software lies the integration of a well-established optimisation algorithm (AUGMECON) with Monte Carlo analysis that helps maximise robustness against stochastic uncertainty, thereby avoiding the complexity of numerous cascading methods and code scripts. Using an object-oriented language, AUGMECON-Py overcomes limitations of its predecessors regarding memory requirements, and further extends the solution algorithm to ensure no efficient solution is left outside the solution grid. The framework is easily accessible, offering effortless data pre-and post-processing, management, and visualisation of results.(c) 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:8
相关论文
共 50 条
  • [1] jMetalPy: A Python']Python framework for multi-objective optimization with metaheuristics
    Benitez-Hidalgo, Antonio
    Nebro, Antonio J.
    Garcia-Nieto, Jose
    Oregi, Izaskun
    Del Ser, Javier
    [J]. SWARM AND EVOLUTIONARY COMPUTATION, 2019, 51
  • [2] Pymoo: Multi-Objective Optimization in Python']Python
    Blank, Julian
    Deb, Kalyanmoy
    [J]. IEEE ACCESS, 2020, 8 : 89497 - 89509
  • [3] EZFF: Python']Python library for multi-objective parameterization and uncertainty quantification of interatomic forcefields for molecular dynamics
    Krishnamoorthy, Aravind
    Mishra, Ankit
    Kamal, Deepak
    Hong, Sungwook
    Nomura, Ken-ichi
    Tiwari, Subodh
    Nakano, Aiichiro
    Kalia, Rajiv
    Ramprasad, Rampi
    Vashishta, Priya
    [J]. SOFTWAREX, 2021, 13
  • [4] Multi-objective optimisation under deep uncertainty
    Babooshka Shavazipour
    Theodor J. Stewart
    [J]. Operational Research, 2021, 21 : 2459 - 2487
  • [5] Multi-objective optimisation under deep uncertainty
    Shavazipour, Babooshka
    Stewart, Theodor J.
    [J]. OPERATIONAL RESEARCH, 2021, 21 (04) : 2459 - 2487
  • [6] A unified framework for model-based multi-objective linear process and energy optimisation under uncertainty
    Charitopoulos, Vassilis M.
    Dua, Vivek
    [J]. APPLIED ENERGY, 2017, 186 : 539 - 548
  • [7] Multi-objective optimisation with uncertainty
    Jones, P
    Tiwari, A
    Roy, R
    Corbett, J
    [J]. PROCEEDINGS OF THE EIGHTH IASTED INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, 2004, : 114 - 119
  • [8] Multi-objective optimisation for biopharmaceutical manufacturing under uncertainty
    Liu, Songsong
    Papageorgiou, Lazaros G.
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2018, 119 : 383 - 393
  • [9] AutoOC: A Python']Python module for automated multi-objective One-Class Classification
    Ferreira, Luis
    Cortez, Paulo
    [J]. SOFTWARE IMPACTS, 2023, 18
  • [10] PyBrOpS: a Python']Python package for breeding program simulation and optimization for multi-objective breeding
    Shrote, Robert Z.
    Thompson, Addie M.
    [J]. G3-GENES GENOMES GENETICS, 2024,