Asynchronous multi-party computation with quadratic communication

被引:0
|
作者
Hirt, Martin [1 ]
Nielsen, Jesper Buns [2 ]
Przydatek, Bartosz [3 ]
机构
[1] ETH, Dept Comp Sci, Zurich, Switzerland
[2] Univ Aarhus, Dept Comp Sci, DK-8000 Aarhus C, Denmark
[3] Google Switzerland, Zurich, Switzerland
关键词
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We present an efficient protocol for secure multi-party computation in the asynchronous model with optimal resilience. For n parties, up to t < n/3 of them being corrupted, and security parameter kappa, a circuit with c gates can be securely computed with communication complexity O(cn(2) kappa) bits, which improves on the previously known solutions by a factor of Omega(n). The construction of the protocol follows the approach introduced by Franklin and Haber (Crypto'93), based on a public-key encryption scheme with threshold decryption. To achieve the quadratic complexity, we employ several techniques, including circuit randomization due to Beaver (Crypto'91), and an abstraction of certificates, which can be of independent interest.
引用
收藏
页码:473 / +
页数:3
相关论文
共 50 条
  • [1] Cryptographic asynchronous multi-party computation with optimal resilience
    Hirt, M
    Nielsen, JB
    Przydatek, B
    [J]. ADVANCES IN CRYPTOLOGY - EUROCRYPT 2005,PROCEEDINGS, 2005, 3494 : 322 - 340
  • [2] The Price of Low Communication in Secure Multi-party Computation
    Garay, Juan
    Ishai, Yuval
    Ostrovsky, Rafail
    Zikas, Vassilis
    [J]. ADVANCES IN CRYPTOLOGY - CRYPTO 2017, PT I, 2017, 10401 : 420 - 446
  • [3] Batch Secret Sharing for Secure Multi-party Computation in Asynchronous Network
    黄征
    龚征
    李强
    [J]. Journal of Shanghai Jiaotong University(Science), 2009, 14 (01) : 112 - 116
  • [4] Batch secret sharing for secure multi-party computation in asynchronous network
    Huang Z.
    Gong Z.
    Li Q.
    [J]. Journal of Shanghai Jiaotong University (Science), 2009, 14 E (01) : 112 - 116
  • [5] Everlasting Multi-party Computation
    Unruh, Dominique
    [J]. ADVANCES IN CRYPTOLOGY - CRYPTO 2013, PT II, 2013, 8043 : 380 - 397
  • [6] Everlasting Multi-party Computation
    Unruh, Dominique
    [J]. JOURNAL OF CRYPTOLOGY, 2018, 31 (04) : 965 - 1011
  • [7] Everlasting Multi-party Computation
    Dominique Unruh
    [J]. Journal of Cryptology, 2018, 31 : 965 - 1011
  • [8] Covert multi-party computation
    Chandran, Nishanth
    Goyal, Vipul
    Ostrovsky, Rafail
    Sahai, Arnit
    [J]. 48TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2007, : 238 - 248
  • [9] Secure Multi-Party Computation
    Bayatbabolghani, Fattaneh
    Blanton, Marina
    [J]. PROCEEDINGS OF THE 2018 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY (CCS'18), 2018, : 2157 - 2159
  • [10] Round-Efficient Byzantine Agreement and Multi-party Computation with Asynchronous Fallback
    Deligios, Giovanni
    Hirt, Martin
    Liu-Zhang, Chen-Da
    [J]. THEORY OF CRYPTOGRAPHY, TCC 2021, PT I, 2021, 13042 : 623 - 653